947 resultados para Radar absorber measurements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regression equations predicting dissectable muscle weight in rabbits from external measurements were presented. Bone weight and weight of muscle groups were also carcass predicted. Predictive capacity of external measurements, retail cuts and muscle groups on total muscle, percent muscle, total bone and muscle to bone ratio were studied separately. Measurements on dissected retail cuts should be included in ordcr to obtain good equations for prediction of percent muscle in the carcass. Equations for predicting the muscle to bone ratio using external mcasurcments and data from the dissection of one hind leg were suggested. The equations had generally high coefficients of determination. The coefficient of determination for prediction of dissectable muscle was 0.91, and for percent muscle in the carcass 0.79.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geometric characterisation of tree orchards is a high-precision activity comprising the accurate measurement and knowledge of the geometry and structure of the trees. Different types of sensors can be used to perform this characterisation. In this work a terrestrial LIDAR sensor (SICK LMS200) whose emission source was a 905-nm pulsed laser diode was used. Given the known dimensions of the laser beam cross-section (with diameters ranging from 12 mm at the point of emission to 47.2 mm at a distance of 8 m), and the known dimensions of the elements that make up the crops under study (flowers, leaves, fruits, branches, trunks), it was anticipated that, for much of the time, the laser beam would only partially hit a foreground target/object, with the consequent problem of mixed pixels or edge effects. Understanding what happens in such situations was the principal objective of this work. With this in mind, a series of tests were set up to determine the geometry of the emitted beam and to determine the response of the sensor to different beam blockage scenarios. The main conclusions that were drawn from the results obtained were: (i) in a partial beam blockage scenario, the distance value given by the sensor depends more on the blocked radiant power than on the blocked surface area; (ii) there is an area that influences the measurements obtained that is dependent on the percentage of blockage and which ranges from 1.5 to 2.5 m with respect to the foreground target/object. If the laser beam impacts on a second target/object located within this range, this will affect the measurement given by the sensor. To interpret the information obtained from the point clouds provided by the LIDAR sensors, such as the volume occupied and the enclosing area, it is necessary to know the resolution and the process for obtaining this mesh of points and also to be aware of the problem associated with mixed pixels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canopy characterization is a key factor to improve pesticide application methods in tree crops and vineyards. Development of quick, easy and efficient methods to determine the fundamental parameters used to characterize canopy structure is thus an important need. In this research the use of ultrasonic and LIDAR sensors have been compared with the traditional manual and destructive canopy measurement procedure. For both methods the values of key parameters such as crop height, crop width, crop volume or leaf area have been compared. Obtained results indicate that an ultrasonic sensor is an appropriate tool to determine the average canopy characteristics, while a LIDAR sensor provides more accuracy and detailed information about the canopy. Good correlations have been obtained between crop volume (CVU) values measured with ultrasonic sensors and leaf area index, LAI (R2 = 0.51). A good correlation has also been obtained between the canopy volume measured with ultrasonic and LIDAR sensors (R2 = 0.52). Laser measurements of crop height (CHL) allow one to accurately predict the canopy volume. The proposed new technologies seems very appropriate as complementary tools to improve the efficiency of pesticide applications, although further improvements are still needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente estudio se enmarca en el proyecto europeo SIBERIA. Trata de explorar el uso de imágenes radar de satélite (ERS y JERS) para la actualización de la cartografía de vegetación de zonas boreales. Se dispone de 8 imágenes de amplitud y coherencia tomadas en 1998, así como de un inventario de vegetación georreferenciado de dos pequeñas zonas. Se proponen tres tipos de clasificaciones supervisadas por el método de máxima verosimilitud. La primera con las imágenes de satélite, la segunda añadiendo algunas imágenes texturales, y la tercera utilizando sólo las imágenes de los componentes principales más significativos. Se siguen los criterios establecidos en el proyecto SIBERIA para la obtención de áreas de entrenamiento. Se propone una doble validación, por una parte vía matrices de confusión a partir de áreas de verdad-terreno obtenidas por el mismo método que las áreas de entrenamiento, y por otra parte contrastando y correlacionando las clasificaciones con los parámetros de inventario disponibles para dos pequeñas áreas de verdad-terreno. Los resultados indican una sensible mejora en la clasificación con la incorporación de imágenes texturales (la precisión aumenta de un 66% a un 75%), y señalan el parámetro biomasa como el mejor correlacionado con las clasificaciones derivadas (coeficiente de correlación r de hasta 0,49). Diferentes fuentes de error permiten augurar un margen de mejora para posteriores estudios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tässä diplomityössä tavoitteena on selvittää käytännöt ja menetelmät, joilla UPM-Kymmenen sellu-, paperi- ja vaneritehtaat ympäri maailman mittaavat ja laskevat ilmapäästönsä. Tämä tehdään kyselylomakkeella, joka lähetetään tehtaiden ympäristöpäälliköille. Kaikki tärkeimmät seikat ilmapäästöihin liittyen, kuten vaaditut jatkuvatoimiset mittaukset, jaksottaiset mittaukset, raportointikäytäntö, kalibrointi jne. kysytään lomakkeessa. Kyselylomakkeessa painotetaan mittauskäytäntöä sellutehtaissa sekä energiantuotannossa. Saatujen tulosten perusteella annetaan ehdotuksia sekä ohjeita tulevaisuutta varten, jotta mittaustulosten kokoaminen helpottuisi ja vertailukelpoisuus paranisi. Työn kirjallisuusosuudessa selvitetään yleisimmät päästölähteet sekä päästökomponentit paperi –ja selluteollisuudessa. Näiden ei toivottujen yhdisteiden syntymekanismit sekä menetelmät niiden poistamiseksi savukaasuista on myös lyhyesti kuvailtu. Myös erilaiset analysointi- ja näytteenottomenetelmät on kerrottu. Erot tehtaiden ympäristöluvissa käydään läpi, jakaen tehtaat kolmeen maantieteelliseen ryhmään. Lupakäytäntöjen osalta Suomen osuutta on painotettu, sillä UPM-Kymmene on varsin Suomikeskeinen yhtiö tehtaiden lukumääriin ja sijainteihin katsottuna. Viranomaismääräykset sekä päästörajat muutamista tehtaista on esitetty havainnollistaakseen alueellisia eroja.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the peptide-MHC (pMHC) on cells is a key parameter for cell-mediated immunity. Yet a fundamental feature of most tumor antigen-specific CD8(+) T cells is that this avidity is low. In this study, we addressed the need to identify and select tumor-specific CD8(+) T cells of highest avidity, which are of the greatest interest for adoptive cell therapy in patients with cancer. To identify these rare cells, we developed a peptide-MHC multimer technology, which uses reversible Ni(2+)-nitrilotriacetic acid histidine tags (NTAmers). NTAmers are highly stable but upon imidazole addition, they decay rapidly to pMHC monomers, allowing flow-cytometric-based measurements of monomeric TCR-pMHC dissociation rates of living CD8(+) T cells on a wide avidity spectrum. We documented strong correlations between NTAmer kinetic results and those obtained by surface plasmon resonance. Using NTAmers that were deficient for CD8 binding to pMHC, we found that CD8 itself stabilized the TCR-pMHC complex, prolonging the dissociation half-life several fold. Notably, our NTAmer technology accurately predicted the function of large panels of tumor-specific T cells that were isolated prospectively from patients with cancer. Overall, our results demonstrated that NTAmers are effective tools to isolate rare high-avidity cytotoxic T cells from patients for use in adoptive therapies for cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a hydrologic model depends on the rainfall input data, both spatially and temporally. As the spatial distribution of rainfall exerts a great influence on both runoff volumes and peak flows, the use of a distributed hydrologic model can improve the results in the case of convective rainfall in a basin where the storm area is smaller than the basin area. The aim of this study was to perform a sensitivity analysis of the rainfall time resolution on the results of a distributed hydrologic model in a flash-flood prone basin. Within such a catchment, floods are produced by heavy rainfall events with a large convective component. A second objective of the current paper is the proposal of a methodology that improves the radar rainfall estimation at a higher spatial and temporal resolution. Composite radar data from a network of three C-band radars with 6-min temporal and 2 × 2 km2 spatial resolution were used to feed the RIBS distributed hydrological model. A modification of the Window Probability Matching Method (gauge-adjustment method) was applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation by computing new Z/R relationships for both convective and stratiform reflectivities. An advection correction technique based on the cross-correlation between two consecutive images was introduced to obtain several time resolutions from 1 min to 30 min. The RIBS hydrologic model was calibrated using a probabilistic approach based on a multiobjective methodology for each time resolution. A sensitivity analysis of rainfall time resolution was conducted to find the resolution that best represents the hydrological basin behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Mitogen activated protein kinases (MAPK) play an essential role in integrating extra-cellular signals and intra-cellular cues to allow cells to grow, adapt to stresses, or undergo apoptosis. Budding yeast serves as a powerful system to understand the fundamental regulatory mechanisms that allow these pathways to combine multiple signals and deliver an appropriate response. To fully comprehend the variability and dynamics of these signaling cascades, dynamic and quantitative single cell measurements are required. Microscopy is an ideal technique to obtain these data; however, novel assays have to be developed to measure the activity of these cascades. RESULTS: We have generated fluorescent biosensors that allow the real-time measurement of kinase activity at the single cell level. Here, synthetic MAPK substrates were engineered to undergo nuclear-to-cytoplasmic relocation upon phosphorylation of a nuclear localization sequence. Combination of fluorescence microscopy and automated image analysis allows the quantification of the dynamics of kinase activity in hundreds of single cells. A large heterogeneity in the dynamics of MAPK activity between individual cells was measured. The variability in the mating pathway can be accounted for by differences in cell cycle stage, while, in the cell wall integrity pathway, the response to cell wall stress is independent of cell cycle stage. CONCLUSIONS: These synthetic kinase activity relocation sensors allow the quantification of kinase activity in live single cells. The modularity of the architecture of these reporters will allow their application in many other signaling cascades. These measurements will allow to uncover new dynamic behaviour that previously could not be observed in population level measurements.