994 resultados para Rachel Carson
Resumo:
This study examined the effect of exercise intensity and duration during 5-day heat acclimation (HA) on cycling performance and neuromuscular responses. 20 recreationally trained males completed a ‘baseline’ trial followed by 5 consecutive days HA, and a ‘post-acclimation’ trial. Baseline and post-acclimation trials consisted of maximal voluntary contractions (MVC), a single and repeated countermovement jump protocol, 20 km cycling time trial(TT) and 5x6 s maximal sprints (SPR). Cycling trials were undertaken in 33.0 ± 0.8 °C and 60 ± 3% relative humidity.Core(Tcore), and skin temperatures (Tskin), heart rate (HR), rating of perceived exertion (RPE) and thermal sensation were recorded throughout cycling trials. Participants were assigned to either 30 min high-intensity (30HI) or 90 min low-intensity (90LI) cohorts for HA, conducted in environmental conditions of 32.0 ± 1.6 °C. Percentage change time to complete the 20 km TT for the 90LI cohort was significantly improved post-acclimation(-5.9 ± 7.0%; P=0.04) compared to the 30HI cohort (-0.18 ± 3.9%; P<0.05). The 30HI cohort showed greatest improvements in power output (PO) during post-acclimation SPR1 and 2 compared to 90LI (546 ± 128 W and 517 ± 87 W,respectively; P<0.02). No differences were evident for MVC within 30HI cohort, however, a reduced performance indicated by % change within the 90LI (P=0.04). Compared to baseline, mean Tcore was reduced post-acclimation within the 30HI cohort (P=0.05) while mean Tcore and HR were significantly reduced within the 90LI cohort (P=0.01 and 0.04, respectively). Greater physiological adaptations and performance improvements were noted within the 90LI cohort compared to the 30HI. However, 30HI did provide some benefit to anaerobic performance including sprint PO and MVC. These findings suggest specifying training duration and intensity during heat acclimation may be useful for specific post-acclimation performance.
Resumo:
This article explores the influence of cultural and religious beliefs and laws on how individuals make decisions about asset distribution through wills, drawing on a case study of Islamic will makers. Findings highlight diversity in beliefs and practices within Australian Islamic communities. When drafting a will people from culturally diverse backgrounds need to accommodate their religious and cultural values and local law. Implications of research findings for legal policy and practice in Australia are discussed.
Resumo:
Hydrogen storage in the three-dimensional carbon foams is analyzed using classical grand canonical Monte Carlo simulations. The calculated storage capacities of the foams meet the material-based DOE targets and are comparable to the capacities of a bundle of well-separated similar diameter open nanotubes. The pore sizes in the foams are optimized for the best hydrogen uptake. The capacity depends sensitively on the C-H-2 interaction potential, and therefore, the results are presented for its ``weak'' and ``strong'' choices, to offer the lower and upper bounds for the expected capacities. Furthermore, quantum effects on the effective C-H-2 as well as H-2-H-2 interaction potentials are considered. We find that the quantum effects noticeably change the adsorption properties of foams and must be accounted for even at room temperature.
Resumo:
The world is in the midst of a biodiversity crisis, threatening essential goods and services on which humanity depends. While there is an urgent need globally for biodiversity research, growing obstacles are severely limiting biodiversity research throughout the developing world, particularly in Southeast Asia. Facilities, funding, and expertise are often limited throughout this region, reducing the capacity for local biodiversity research. Although western scientists generally have more expertise and capacity, international research has sometimes been exploitative ``parachute science,'' creating a culture of suspicion and mistrust. These issues, combined with misplaced fears of biopiracy, have resulted in severe roadblocks to biodiversity research in the very countries that need it the most. Here, we present an overview of challenges to biodiversity research and case studies that provide productive models for advancing biodiversity research in developing countries. Key to success is integration of research and education, a model that fosters sustained collaboration by focusing on the process of conducting biodiversity research as well as research results. This model simultaneously expands biodiversity research capacity while building trust across national borders. It is critical that developing countries enact policies that protect their biodiversity capital without shutting down international and local biodiversity research that is essential to achieve the long-term sustainability of biodiversity, promoting food security and economic development.
Resumo:
Two mechanisms - factor independent and dependent termination - ensure the completion of RNA synthesis in eubacteria. Factor-dependent mechanism relies on the Rho protein to terminate transcription by interacting with RNA polymerase. Although well studied in Escherichia coli, the properties of the Rho homologs from most bacteria are not known. The rho gene is unusually large in genus Mycobacterium and other members of actinobacteria, having,150 additional residues towards the amino terminal end. We describe the distinct properties of Rho from Mycobacterium tuberculosis. It is an NTPase with a preference for purine nucleoside triphosphates with kinetic properties different from E. coli homolog and an ability to use various RNA substrates. The N-terminal subdomain of MtbRho can bind to RNA by itself, and appears to contribute to the interaction of the termination factor with RNAs. Furthermore, the interaction with RNA induces changes in conformation and oligomerization of MtbRho.
Resumo:
Fisheries management actions taken to protect one species can have unintended, and sometimes positive, consequences on other species. For example, regulatory measures to reduce fishing effort in the winter gillnet fishery for spiny dogfish (Squalus acanthias) off North Carolina (NC) also led to decreases in the number of bycaught bottlenose dolphins (Tursiops truncatus). This study found that a marked decrease in fishing effort for spiny dogfish in NC also corresponded with a marked decrease in winter stranding rates of bottlenose dolphins with entanglement lesions (P= 0.002). Furthermore, from 1997 through 2002, there was a significant positive correlation (r2 = 0.79; P= 0.0003) between seasonal bycatch estimates of bottlenose dolphins in gill nets and rates of stranded dolphins with entanglement lesions. With this information, stranding thresholds were developed that would enable the detection of those increases in bycatch in near real-time. This approach is valuable because updated bycatch estimates from observer data usually have a time-lag of two or more years. Threshold values could be used to detect increases in stranding rates, triggering managers immediately to direct observer effort to areas of potentially high bycatch or to institute mitigation measures. Thus, observer coverage and stranding investigations can be used in concert for more effective fishery management.
Resumo:
Considerations to introduce the Suminoe or Asian oyster Crassostrea ariakensis along the East Coast have raised many questions regarding ecology, economics, and human health. To date, research has focused primarily on the ecological and socioeconomic implications of this initiative, yet few studies have assessed its potential impact on public health. Our work compares the rates of bioaccumulation, depuration and post harvest decay of indicator organisms (such as E. coli) and Vibrio sp. between Crassostrea virginica and Crassostrea ariakensis in the laboratory. Preliminary results suggest that the rates of bioaccumulation of E. coli in Crassostrea ariakensis were significantly lower than those for Crassostrea virginica, depuration of E. coli was variable between the two species, and Crassostrea ariakensis post harvest decay rates of Vibrio sp. were significantly lower than Crassostrea virginica. This research provides coastal managers with insight into the response of Crassostrea ariakensis to bacteria, an important consideration for determining appropriate management strategies for this species. Further field-based studies will be necessary to elucidate the mechanisms responsible for the differences in rates of bioaccumulation and depuration. (PDF contains 40 pages)
Resumo:
This report addresses five key topics: »» Policy development and implementation »» Skills and capability »» Infrastructure and interoperability »» Incentives for researchers and support stakeholders »» Business case and sustainability
Resumo:
Images of Research is the annual competition and exhibition from the University of Strathclyde, which is designed to broaden the appeal of the university's research outputs to the general public. This year, to bring the research to life Chris Thomson, subject specialist - online learning and the digital student experience, Jisc, helped to support the participants in using digital storytelling. Rachel Clark, project coordinator at the university, talks about the thinking behind the exhibition.
Resumo:
The goal of the Puget Sound Nearshore Ecosystem Restoration Project (PSNERP) is to improve system-wide functionality of nearshorei ecosystem processes. To achieve that goal, PSNERP plans to strategically restore nearshore sites throughout Puget Sound. PSNERP scientists are assessing changes to the nearshore, and will recommend an environmentally strategic restoration portfolio. Yet, PSNERP also needs stakeholder input to design a socially strategic portfolio. This research investigates the values and preferences of stakeholders in the Whidbey Sub-Basin of Puget Sound to help PSNERP be both socially and environmentally strategic. This investigation may be repeated in the six other Puget Sound Sub-Basins. The results will guide restoration portfolio design and future stakeholder involvement activities. This study examines four areas of stakeholder values and preferences: 1) beliefs about the causes, solutions, and severity of nearshore problems; 2) priorities for nearshore features, shoreforms, developments, and restoration objectives; 3) thoughts about ecosystem servicesiii and trade-offs among them; and 4) visions of a future, restored Puget Sound nearshore and the role of science in attaining this vision. The study is framed by two hypotheses from the Advocacy Coalition Framework (ACF), which suggests that groups of policy advocates form around shared “policy core beliefs” which can transcend traditional categories of stakeholders.(PDF contains 3 pages)
Resumo:
A long-standing challenge in transition metal catalysis is selective C–C bond coupling of simple feedstocks, such as carbon monoxide, ethylene or propylene, to yield value-added products. This work describes efforts toward selective C–C bond formation using early- and late-transition metals, which may have important implications for the production of fuels and plastics, as well as many other commodity chemicals.
The industrial Fischer-Tropsch (F-T) process converts synthesis gas (syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and oxygenates. Well-defined homogeneous catalysts for F-T may provide greater product selectivity for fuel-range liquid hydrocarbons compared to traditional heterogeneous catalysts. The first part of this work involved the preparation of late-transition metal complexes for use in syngas conversion. We investigated C–C bond forming reactions via carbene coupling using bis(carbene)platinum(II) compounds, which are models for putative metal–carbene intermediates in F-T chemistry. It was found that C–C bond formation could be induced by either (1) chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) starting complexes. These two mild methods afforded different products, constitutional isomers, suggesting that at least two different mechanisms are possible for C–C bond formation from carbene intermediates. These results are encouraging for the development of a multicomponent homogeneous catalysis system for the generation of higher hydrocarbons.
A second avenue of research focused on the design and synthesis of post-metallocene catalysts for olefin polymerization. The polymerization chemistry of a new class of group 4 complexes supported by asymmetric anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical early transition metal polymerization catalysts, NNO-ligated catalysts produce nearly regiorandom polypropylene, with as many as 30-40 mol % of insertions being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most metallocene systems. A survey of model Ti polymerization catalysts suggests that catalyst modification pathways that could affect regioselectivity, such as C–H activation of the anilide ring, cleavage of the amine R-group, or monomer insertion into metal–ligand bonds are unlikely. A parallel investigation of a Ti–amido(pyridine)phenolate polymerization catalyst, which features a five- rather than a six-membered Ti–N chelate ring, but maintained a dianionic NNO motif, revealed that simply maintaining this motif was not enough to produce regioirregular polypropylene; in fact, these experiments seem to indicate that only an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular polypropylene. As yet, the underlying causes for the unique regioselectivity of anilide(pyridine)phenolate polymerization catalysts remains unknown. Further exploration of NNO-ligated polymerization catalysts could lead to the controlled synthesis of new types of polymer architectures.
Finally, we investigated the reactivity of a known Ti–phenoxy(imine) (Ti-FI) catalyst that has been shown to be very active for ethylene homotrimerization in an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-oligomerization of heavy and light olefins. We demonstrated that the Ti-FI catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin dimerization and trimerization, respectively. Future work will include kinetic studies to determine monomer selectivity by investigating the relative rates of insertion of light olefins (e.g., ethylene) vs. higher α-olefins, as well as a more detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit this catalyst in a multi-catalyst system for conversion of simple alkenes into hydrocarbon fuels.
Resumo:
This dissertation covers progress with bimetallic polymerization catalysts. The complexes we have designed were aimed at expanding the capabilities of homogeneous polymerization catalysts by taking advantage of multimetallic effects. Such effects were examined in group 4 and group 10 bimetallic complexes; proximity and steric repulsion were determined to be major factors in the effects observed.
Chapters 2 and 3 introduce the rigid p-terphenyl dinucleating framework utilized in most of this thesis. The permethylation of the central arene allows for the separation of syn and anti atropisomers of the terphenyl compounds. Kinetic studies were carried out to examine the isomerization of the dinucleating bis(salicylaldimine) ligand precursors. Metallation of the syn and anti bis(salicylaldimine)s using Ni(Me)2(tmeda) and excess pyridine afforded dinickel bisphenoxyiminato complexes with a methyl and a pyridyl ligand on each nickel. The syn and anti atropisomers of the dinickel complexes were structurally characterized and utilized in ethylene and ethylene/α-olefin polymerizations. Monometallic analogues were also synthesized and tested for polymerization activity. Ethylene polymerizations were performed in the presence of primary, secondary, and tertiary amines – additives that generally deactivate nickel polymerization catalysts. Inhibition of this deactivation was observed with the syn atropisomer of the bimetallic species, but not with the anti or monometallic analogues. A mechanism was proposed wherein steric repulsion of the substituents on proximal nickel centers disfavors simultaneous ligation of base to both of the metal centers. The bimetallic effect has been explored with respect to size and binding ability of the added base.
Chapter 4 presents the optimization of the bisphenoxyimine ligand synthesis and synthesis of syn and anti m-terphenyl analogues. Metallation with NiClMe(PMe3)2 yielded phosphine-ligated dinickel complexes, which have been structurally characterized. Ethylene/1-hexene copolymerizations in the presence of amines using Ni(COD)2 as a phosphine scavenger showed significantly improved activity relative to the pyridine-ligated analogues. Incorporation of amino olefins in copolymerizations with ethylene was accomplished, and a mechanism was proposed based on proximal effects. Copolymerization trials with a variety of amino olefins and ethylene/1-hexene/amino olefin terpolymerizations were completed.
Early transition metal complexes based on the rigid p-terphenyl framework were designed with a variety of donor sets (Chapter 5 and Appendix B). Chapter 5 details the use of syn dizirconium di[amine bis(phenolate)] complexes for isoselective 1-hexene and propylene homopolymerizations. Ligand variation and monometallic complexes were studied to determine the origin of tacticity control. A mechanistic proposal was presented based on the symmetry at zirconium and the steric effects of the proximal metal center. Appendix B covers additional studies of bimetallic early transition metal complexes based on the p-terphenyl. Dititanium, dizirconium, and asymmetric complexes with bisphenoxyiminato ligands and derivatives thereof were targeted. Progress toward the synthesis of these complexes is described along with preliminary polymerization data. 1-hexene/diene copolymerizations and attempted polymerizations in the presence of ethers and esters with the syn dizirconium di[amine bis(phenolate)] complexes demonstrate the potential for further applications of this system in catalysis.
Appendix A includes work toward palladium catalysts for insertion polymerization of polar monomers. These complexes were based on dioxime and diimine frameworks with the intent of binding Lewis acidic metals at the oxime oxygens, at pendant phenolic donors, or at pendant aminediol moieties. The synthesis and structural characterization of a number of palladium and Lewis acid complexes is presented. Due to the instability of the desired species, efforts toward isolation of the desired complexes proved unsuccessful, though preliminary ethylene/methyl acrylate copolymerizations using in situ activation of the palladium species were attempted.