962 resultados para ROAD UTILITY VEHICLE
Resumo:
The term “road toll” quantifies road deaths and attracts media attention, particularly during Easter/Christmas holiday periods. Since the media focuses considerable attention on this issue, we might expect that this would translate into awareness among drivers the number of people killed, which in turn, would hopefully encourage safer driving. Road safety professionals are cognisant of road toll trends but there is little information available to indicate awareness of road fatalities among the general population. This research investigated awareness of fatalities on Queensland and Australian roads among Queensland drivers.
Resumo:
There is little discussion of fatalism in the road safety literature, and limited research. However, fatalism is a potential barrier to participation in health-promoting behaviours, particularly among the populations of developing countries and to some extent in developed countries. Many people still believe in divine discretion and magical powers as causes of road crashes in different parts of the world. Fatalistic beliefs and beliefs in mystical powers and superstition appear to influence perceptions of crash risk and consequently lead people to take risks and neglect safety measures. Fatalistic beliefs may cause individuals to be resigned to risks because they cannot do anything to reduce these risks.
Resumo:
Physical infrastructure assets are important components of our society and our economy. They are usually designed to last for many years, are expected to be heavily used during their lifetime, carry considerable load, and are exposed to the natural environment. They are also normally major structures, and therefore present a heavy investment, requiring constant management over their life cycle to ensure that they perform as required by their owners and users. Given a complex and varied infrastructure life cycle, constraints on available resources, and continuing requirements for effectiveness and efficiency, good management of infrastructure is important. While there is often no one best management approach, the choice of options is improved by better identification and analysis of the issues, by the ability to prioritise objectives, and by a scientific approach to the analysis process. The abilities to better understand the effect of inputs in the infrastructure life cycle on results, to minimise uncertainty, and to better evaluate the effect of decisions in a complex environment, are important in allocating scarce resources and making sound decisions. Through the development of an infrastructure management modelling and analysis methodology, this thesis provides a process that assists the infrastructure manager in the analysis, prioritisation and decision making process. This is achieved through the use of practical, relatively simple tools, integrated in a modular flexible framework that aims to provide an understanding of the interactions and issues in the infrastructure management process. The methodology uses a combination of flowcharting and analysis techniques. It first charts the infrastructure management process and its underlying infrastructure life cycle through the time interaction diagram, a graphical flowcharting methodology that is an extension of methodologies for modelling data flows in information systems. This process divides the infrastructure management process over time into self contained modules that are based on a particular set of activities, the information flows between which are defined by the interfaces and relationships between them. The modular approach also permits more detailed analysis, or aggregation, as the case may be. It also forms the basis of ext~nding the infrastructure modelling and analysis process to infrastructure networks, through using individual infrastructure assets and their related projects as the basis of the network analysis process. It is recognised that the infrastructure manager is required to meet, and balance, a number of different objectives, and therefore a number of high level outcome goals for the infrastructure management process have been developed, based on common purpose or measurement scales. These goals form the basis of classifYing the larger set of multiple objectives for analysis purposes. A two stage approach that rationalises then weights objectives, using a paired comparison process, ensures that the objectives required to be met are both kept to the minimum number required and are fairly weighted. Qualitative variables are incorporated into the weighting and scoring process, utility functions being proposed where there is risk, or a trade-off situation applies. Variability is considered important in the infrastructure life cycle, the approach used being based on analytical principles but incorporating randomness in variables where required. The modular design of the process permits alternative processes to be used within particular modules, if this is considered a more appropriate way of analysis, provided boundary conditions and requirements for linkages to other modules, are met. Development and use of the methodology has highlighted a number of infrastructure life cycle issues, including data and information aspects, and consequences of change over the life cycle, as well as variability and the other matters discussed above. It has also highlighted the requirement to use judgment where required, and for organisations that own and manage infrastructure to retain intellectual knowledge regarding that infrastructure. It is considered that the methodology discussed in this thesis, which to the author's knowledge has not been developed elsewhere, may be used for the analysis of alternatives, planning, prioritisation of a number of projects, and identification of the principal issues in the infrastructure life cycle.
Resumo:
The Inflatable Rescue Boat (IRB) is arguably the most effective rescue tool used by the Australian surf lifesavers. The exceptional features of high mobility and rapid response have enabled it to become an icon on Australia's popular beaches. However, the IRB's extensive use within an environment that is as rugged as it is spectacular, has led it to become a danger to those who risk their lives to save others. Epidemiological research revealed lower limb injuries to be predominant, particularly the right leg. The common types of injuries were fractures and dislocations, as well as muscle or ligament strains and tears. The concern expressed by Surf Life Saving Queensland (SLSQ) and Surf Life Saving Australia (SLSA) led to a biomechanical investigation into this unique and relatively unresearched field. The aim of the research was to identify the causes of injury and propose processes that may reduce the instances and severity of injury to surf lifesavers during IRB operation. Following a review of related research, a design analysis of the craft was undertaken as an introduction to the craft, its design and uses. The mechanical characteristics of the vessel were then evaluated and the accelerations applied to the crew in the IRB were established through field tests. The data were then combined and modelled in the 3-D mathematical modelling and simulation package, MADYMO. A tool was created to compare various scenarios of boat design and methods of operation to determine possible mechanisms to reduce injuries. The results of this study showed that under simulated wave loading the boats flex around a pivot point determined by the position of the hinge in the floorboard. It was also found that the accelerations experienced by the crew exhibited similar characteristics to road vehicle accidents. Staged simulations indicated the attributes of an optimum foam in terms of thickness and density. Likewise, modelling of the boat and crew produced simulations that predicted realistic crew response to tested variables. Unfortunately, the observed lack of adherence to the SLSA footstrap Standard has impeded successful epidemiological and modelling outcomes. If uniformity of boat setup can be assured then epidemiological studies will be able to highlight the influence of implementing changes to the boat design. In conclusion, the research provided a tool to successfully link the epidemiology and injury diagnosis to the mechanical engineering design through the use of biomechanics. This was a novel application of the mathematical modelling software MADYMO. Other craft can also be investigated in this manner to provide solutions to the problem identified and therefore reduce risk of injury for the operators.
Resumo:
This study is conducted within the IS-Impact Research Track at Queensland University of Technology (QUT). The goal of the IS-Impact Track is, "to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice" (Gable et al, 2006). IS-Impact is defined as "a measure at a point in time, of the stream of net benefits from the IS [Information System], to date and anticipated, as perceived by all key-user-groups" (Gable Sedera and Chan, 2008). Track efforts have yielded the bicameral IS-Impact measurement model; the "impact" half includes Organizational-Impact and Individual-Impact dimensions; the "quality" half includes System-Quality and Information-Quality dimensions. The IS-Impact model, by design, is intended to be robust, simple and generalisable, to yield results that are comparable across time, stakeholders, different systems and system contexts. The model and measurement approach employs perceptual measures and an instrument that is relevant to key stakeholder groups, thereby enabling the combination or comparison of stakeholder perspectives. Such a validated and widely accepted IS-Impact measurement model has both academic and practical value. It facilitates systematic operationalisation of a main dependent variable in research (IS-Impact), which can also serve as an important independent variable. For IS management practice it provides a means to benchmark and track the performance of information systems in use. From examination of the literature, the study proposes that IS-Impact is an Analytic Theory. Gregor (2006) defines Analytic Theory simply as theory that ‘says what is’, base theory that is foundational to all other types of theory. The overarching research question thus is "Does IS-Impact positively manifest the attributes of Analytic Theory?" In order to address this question, we must first answer the question "What are the attributes of Analytic Theory?" The study identifies the main attributes of analytic theory as: (1) Completeness, (2) Mutual Exclusivity, (3) Parsimony, (4) Appropriate Hierarchy, (5) Utility, and (6) Intuitiveness. The value of empirical research in Information Systems is often assessed along the two main dimensions - rigor and relevance. Those Analytic Theory attributes associated with the ‘rigor’ of the IS-Impact model; namely, completeness, mutual exclusivity, parsimony and appropriate hierarchy, have been addressed in prior research (e.g. Gable et al, 2008). Though common tests of rigor are widely accepted and relatively uniformly applied (particularly in relation to positivist, quantitative research), attention to relevance has seldom been given the same systematic attention. This study assumes a mainly practice perspective, and emphasises the methodical evaluation of the Analytic Theory ‘relevance’ attributes represented by the Utility and Intuitiveness of the IS-Impact model. Thus, related research questions are: "Is the IS-Impact model intuitive to practitioners?" and "Is the IS-Impact model useful to practitioners?" March and Smith (1995), identify four outputs of Design Science: constructs, models, methods and instantiations (Design Science research may involve one or more of these). IS-Impact can be viewed as a design science model, composed of Design Science constructs (the four IS-Impact dimensions and the two model halves), and instantiations in the form of management information (IS-Impact data organised and presented for management decision making). In addition to methodically evaluating the Utility and Intuitiveness of the IS-Impact model and its constituent constructs, the study aims to also evaluate the derived management information. Thus, further research questions are: "Is the IS-Impact derived management information intuitive to practitioners?" and "Is the IS-Impact derived management information useful to practitioners? The study employs a longitudinal design entailing three surveys over 4 years (the 1st involving secondary data) of the Oracle-Financials application at QUT, interspersed with focus groups involving senior financial managers. The study too entails a survey of Financials at four other Australian Universities. The three focus groups respectively emphasise: (1) the IS-Impact model, (2) the 2nd survey at QUT (descriptive), and (3) comparison across surveys within QUT, and between QUT and the group of Universities. Aligned with the track goal of producing IS-Impact scores that are highly comparable, the study also addresses the more specific utility-related questions, "Is IS-Impact derived management information a useful comparator across time?" and "Is IS-Impact derived management information a useful comparator across universities?" The main contribution of the study is evidence of the utility and intuitiveness of IS-Impact to practice, thereby further substantiating the practical value of the IS-Impact approach; and also thereby motivating continuing and further research on the validity of IS-Impact, and research employing the ISImpact constructs in descriptive, predictive and explanatory studies. The study also has value methodologically as an example of relatively rigorous attention to relevance. A further key contribution is the clarification and instantiation of the full set of analytic theory attributes.
Resumo:
- Safety psychology and workplace safety - Motivational and attitudinal components of safety - Psychological determinants of safety - Addressing risk-behaviour in safety - Case Study from Construction - Discussion and Questions