909 resultados para REACTOR KINETICS
Resumo:
The inactivation kinetics of enzymes polyphenol oxidase (PPO) and peroxidase (POD) was studied for the batch (discontinuous) microwave treatment of green coconut water. Inactivation of commercial PPO and POD added to sterile coconut water was also investigated. The complete time-temperature profiles of the experimental runs were used for determination of the kinetic parameters D-value and z-value: PPO (D(92.20 degrees C) = 52 s and z = 17.6 degrees C); POD (D(92.92 degrees C) = 16 s and z = 11.5 degrees C); PPO/sterile coconut water: (D(84.45 degrees C) = 43 s and z = 39.5 degrees C) and POD/sterile coconut water: (D(86.54 degrees C) = 20 s and z = 19.3 degrees C). All data were well fitted by a first order kinetic model. The enzymes naturally present in coconut water showed a higher resistance when compared to those added to the sterilized medium or other simulated solutions reported in the literature. The thermal inactivation of PPO and POD during microwave processing of green coconut water was significantly faster in comparison with conventional processes reported in the literature. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electrocatalytic oxidation of ascorbate on a ruthenium oxide hexacyanoferrate (RuOHCF) glassy carbon (GC) modified electrode was investigated at pH 6.9 by using rotating disc electrode (RDE) voltammetry. The influence of the systematic variation of rotation rate, film thickness, ascorbate concentration and the electrode potential indicated that the rate of cross-chemical reaction between Ru(III) centres immobilized into the film and ascorbate controls the overall process. The kinetic regime may be classified as a Sk `` mechanism and the second order rate constant for the surface electrocatalytic reaction was found to be 1.56 x 10(-3) mol(-1) L-1 s(-1) cm. A carbon fibre microelectrode modified with the RuOHCF film was successfully used as an amperometric sensor to monitor the ascorbate diffusion in a simulated microenvironment experiment. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A spectroscopic study was performed showing that the [Fe(III)(L(2-))(2)](1-) (L(2-) = dopacatecholate) complex reacts with Ni(II), Co(II) and Zn(II) in an aqueous solution containing S(2)O(3)(2-) resulting in the soluble [M(L(1-))(3)](1-) (L(1-) = dopasemiquinone; M = Ni(II), Co(II) or Zn(II) complex species. The Raman and IR spectra of the [CTA][M(L(1-))(3)] complexes, CTA hexadecyltrimethylammonium cation, in the solid state were obtained. The kinetic constants for the metal substitution reactions were determined at four different temperatures, providing values for Delta W(not equal) Delta S(not equal) and Delta G(not equal). The reactions were slow (k = 10(-1)1 M s(-1)) and endothermic. The system investigated can be considered as a simplified model to explain some aspects of siderophore chemistry. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The effects of alkali treatment on the structural characteristics of cotton linters and sisal cellulose samples have been studied. Mercerization results in a decrease in the indices of crystallinity and the degrees of polymerization, and an increase in the alpha-cellulose contents of the samples. The relevance of the structural properties of cellulose to its dissolution is probed by studying the kinetics of cellulose decrystallization, prior to its solubilization in LiCl/N,N-dimethylacetamide (DMAc). Our data show that the decrystallization rate constants and activation parameters are only slightly dependent on the physico-chemical properties of the starting celluloses. This multi-step reaction is accompanied by a small enthalpy and large, negative, entropy of activation. These results are analyzed in terms of the interactions within the biopolymer chains during decrystallization, as well as those between the two ions of the electrolyte and both DMAc and cellulose.
Resumo:
In this work, TG/DTG and DSC techniques were used to the determination of thermal behavior of prednicarbate alone and associated with glyceryl stearate excipient ( 1: 1 physical mixture). TG/DTG curves obtained for the binary mixture showed a reduction of approximately 37 degrees C to the thermal stability of drug (T(dm/dt-0) (Max)(DTG)). The disappearance of stretching band at 1280 cm(-1) (nu(as) C-O, carbonate group) and the presence of streching band with less intensity at 1750 cm(-1) (nu(s) C-O, ester group) in IR spectrum obtained to the binary mixture submitted at 220 degrees C, when compared with IR spectrum of drug submitted to the same temperature, confirmed the chemical interaction between these substances due to heating. Kinetics parameters of decomposition reaction of prednicarbate were obtained using isothermal (Arrhenius equation) and non-isothermal (Ozawa) methods. The reduction of approximately 45% of activation energy value (E(a)) to the first step of thermal decomposition reaction of drug in the 1:1 (mass/mass) physical mixture was observed by both kinetics methods.
Resumo:
This paper reports experiments involving the electrochemical combustion of humic acid (HA) and removal of algae from pond water. An electrochemical flow reactor with a boron-doped diamond film anode was used and constant current experiments were conducted in batch recirculation mode. The mass transfer characteristics of the electrochemical device were determined by voltammetric experiments in the potential region of water stability, followed by a controlled current experiment in the potential region of oxygen evolution. The average mass transfer coefficient was 5.2 x 10(-5) m s(-1). The pond water was then processed to remove HA and algae in the conditions in which the reaction combustion occurred under mass transfer control. To this end, the mass transfer coefficient was used to estimate the initial limiting current density applied in the electrolytic experiments. As expected, all the parameters analyzed here-solution absorbance at 270 nm, total phenol concentration and total organic carbon concentration-decayed according to first-order kinetics. Since the diamond film anode successfully incinerated organic matter, the electrochemical system proved to be predictable and programmable.
Resumo:
The acid hydrolysis of cellulose with crystalline and amorphous fractions is analyzed on the basis of autocatalytic model with a positive feedback of acid production from the degraded biopolymer. In the condition of low acid rate production compared with hydrolysis rate, both fraction of cellulose decrease exponentially with linear and cubic time dependence, and the normalized number of scissions per cellulose chain follows a sigmoid behavior with reaction time. The model predicts that self generated acidic compounds from cellulose accelerate the degradation of the biopolymer. However, if the acidic compounds produced are volatile species, then their release under low pressure will reduce the global rate of degradation of cellulose toward its intrinsic rate value determined by the residual acid catalyst present in the starting material.
Resumo:
This work assesses the photocatalytic (TiO2/UV) degradation of a simulated acid dye bath (Yellow 3, Red 51, Blue 74, and auxiliary chemicals). Color and phytotoxicity removal were monitored by spectrophotometry and lettuce (Lactuca sativa) seeds as the test organism, respectively. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 240 minutes of irradiation, it was achieved 96% and 78% of color removal with photocatalysis and photolysis, respectively. 37% of mineralization occurred with photocatalysis only. The dye bath was rendered completely non-toxic after 60 minutes of photocatalytic treatment; the same result was only achieved with photolysis after 90 minutes. A kinetic model composed of two first-order in series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 0.062 min(-1) and the second k(2) = 0.0043 min(-1), approximately two times greater than the photolytic ones.
Resumo:
This work assesses the photocatalytic (TiO(2)/UV) degradation of a simulated reactive dye bath (Black 5, Red 239, Yellow 17, and auxiliary chemicals). Color removal was monitored by spectrophotometry. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 30 min of irradiation, it was achieved 97% and 40% of color removal with photocatalysis and photolysis, respectively. No mineralization occurred within 30 min. A kinetic model composed of two, first-order in-series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 2.6 min(-1) and the second k(2) = 0.011 min(-1). The fast decolorization of Reactive Black 5 dye is an indication that the number of azo and vinylsulfone groups in the dye molecule maybe a determining factor for the increased photolytic and photocatalytic color removal and degradation rates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
O reator seqüencial em batelada (RSB) é uma variante de lodos ativados capaz de promover a remoção da matéria orgânica, a remoção dos nutrientes e a separação da fase sólida da líquida em uma unidade. A valorização das áreas urbanas, a carência de tratamento terciário e a crescente necessidade de redução nas dimensões de estações de tratamento de esgoto devem impulsionar o desenvolvimento de pesquisas sobre RSB em curto espaço de tempo. A partir deste cenário, o presente trabalho teve como objetivo modelar o comportamento do reator seqüencial em batelada a partir da teoria desenvolvida por Marais e colaboradores. Dentro deste contexto, a cinética de oxidação dos compostos orgânicos e do nitrogênio na forma amoniacal foi descrita e modelada. O trabalho experimental foi realizado em duas escalas: bancada e piloto. O experimento em escala de bancada foi dividido em duas fases. Foram utilizados dois RSBs e um sistema de fluxo contínuo. Um reator seqüencial em batelada (RSB1) foi operado com idade de lodo. O outro reator em batelada (RSB2) foi operado em função da relação F/M e o sistema de fluxo contínuo (FC1) por idade de lodo. Estes reatores foram utilizados como controle no monitoramento do RSB1 Na primeira fase, os três sistemas removeram apenas matéria orgânica. Na fase seguinte, removeram matéria orgânica e nitrogênio. A partir dos resultados obtidos em escala de bancada, foi possível concluir que o modelo desenvolvido pode ser aplicado ao reator seqüencial em batelada operando com idade de lodo, permitindo determinar a qualidade do efluente, a produção de lodo e o consumo de oxidante. Além disso, foi possível descrever o comportamento da taxa de consumo de oxigênio em função da oxidação da matéria orgânica biodegradável e da oxidação do nitrogênio na forma amoniacal. O reator seqüencial em batelada operado com idade de lodo (RSB1) alcançou remoção média de matéria orgânica de 90 % nas idades de lodo de 30, 20, 10 e 5 dias. A remoção média de nitrogênio mais elevada foi obtida na idade de lodo de 20 dias e atingiu 87 %. Nas demais idades de lodo a remoção média de nitrogênio variou entre 79 e 42 %. A modelagem do comportamento do reator seqüencial em batelada resultou numa proposta de metodologia para o dimensionamento que tem como finalidade abolir critérios obsoletos e inadequados para o dimensionamento de lodos ativados em batelada No experimento em escala piloto, foram utilizados um reator seqüencial em batelada, denominado RSB, e um sistema de fluxo contínuo com a configuração Bardenpho, denominado FC. Os sistemas de lodos ativados sob investigação foram monitorados em duas idades de lodo: 30 e 10 dias. Os dados do experimento em escala piloto mostraram que os processos físico-químicos e biológicos envolvidos na remoção de matéria orgânica e nitrogênio no RSB foram mais eficientes do que no Bardenpho quando trataram o mesmo esgoto doméstico e foram submetidos às mesmas condições operacionais. No RSB, obteve-se 88 e 89 % de remoção de matéria orgânica nas idades de lodo de 10 e 30 dias, respectivamente. Nesta seqüência das idades de lodo, a eficiência do Bardenpho caiu de 87 para 76 %. O sistema de fluxo contínuo removeu 66 e 52 % do nitrogênio total afluente nas idades de lodo de 10 e 30 dias, respectivamente. A eficiência do RSB na remoção de nitrogênio foi determinada apenas na idade de lodo de 10 dias e alcançou 69 %. A partir dos resultados obtidos em escala de bancada e piloto, constata-se que o reator seqüencial em batelada operando com idade de lodo pode ser utilizado no tratamento de esgoto doméstico e obter eficiência na remoção de matéria orgânica e nitrogênio igual ou superior ao sistema de fluxo contínuo.
Resumo:
heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke
Resumo:
The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance
Resumo:
Different types of heterogeneous catalysts of the silicoaluminophosphate type, (SAPO-5, SAPO-11, SAPO-31, SAPO-34 and SAPO-41), molecular sieves with a: AFI, AEL, ATO, CHA and AFO structure, respectively, were synthesized through the hydrothermal method. Using sources such as hydrated alumina (pseudobohemita), phosphoric acid, silica gel, water, as well as, different types of organic structural templates, such as: cetyltrimethylammonium bromide (CTMABr), di-isopropylamine (DIPA), di-n- propylamine (DNPA) and tetraethylammonium hydroxide (TEOS), for the respective samples. During the preparation of the silicoaluminophosphates, the crystallization process of the samples occurred at a temperature of approximately 200 ° C, ranging through periods of 18-72 h, when it was possible to obtain pure phases for the SAPOs. The materials were furthermore washed with deionized water, dried and calcined to remove the molecules of the templates. Subsequently the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared region (FT-IR), specific surface area and thermal analysis via TG/DTG. The acidic properties were determined using adsorption of n-butylamine followed by programmed termodessorption. These methods revealed that the SAPO samples showed a typically weak to moderate acidity. However, a small amount of strong acid sites was also detected. The deactivation of the catalysts was conducted by artificially coking the samples, followed by n-hexane cracking reactions in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the catalysts regeneration and removal of the coke
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)