814 resultados para QUaternion ESTimator algorithm
Resumo:
The multiprocessor task graph scheduling problem has been extensively studied asacademic optimization problem which occurs in optimizing the execution time of parallelalgorithm with parallel computer. The problem is already being known as one of the NPhardproblems. There are many good approaches made with many optimizing algorithmto find out the optimum solution for this problem with less computational time. One ofthem is branch and bound algorithm.In this paper, we propose a branch and bound algorithm for the multiprocessor schedulingproblem. We investigate the algorithm by comparing two different lower bounds withtheir computational costs and the size of the pruned tree.Several experiments are made with small set of problems and results are compared indifferent sections.
Resumo:
The automated timetabling and scheduling is one of the hardest problem areas. This isbecause of constraints and satisfying those constraints to get the feasible and optimizedschedule, and it is already proved as an NP Complete (1) [1]. The basic idea behind this studyis to investigate the performance of Genetic Algorithm on general scheduling problem underpredefined constraints and check the validity of results, and then having comparative analysiswith other available approaches like Tabu search, simulated annealing, direct and indirectheuristics [2] and expert system. It is observed that Genetic Algorithm is good solutiontechnique for solving such problems and later analysis will prove this argument. The programis written in C++ and analysis is done by using variation in various parameters.
Resumo:
The field of automated timetabling and scheduling meeting all the requirementsthat we call constraints is always difficult task and already proved as NPComplete. The idea behind my research is to implement Genetic Algorithm ongeneral scheduling problem under predefined constraints and check the validityof results, and then I will explain the possible usage of other approaches likeexpert systems, direct heuristics, network flows, simulated annealing and someother approaches. It is observed that Genetic Algorithm is good solutiontechnique for solving such problems. The program written in C++ and analysisis done with using various tools explained in details later.
Resumo:
The FE ('fixed effects') estimator of technical inefficiency performs poorly when N ('number of firms') is large and T ('number of time observations') is small. We propose estimators of both the firm effects and the inefficiencies, which have small sample gains compared to the traditional FE estimator. The estimators are based on nonparametric kernel regression of unordered variables, which includes the FE estimator as a special case. In terms of global conditional MSE ('mean square error') criterions, it is proved that there are kernel estimators which are efficient to the FE estimators of firm effects and inefficiencies, in finite samples. Monte Carlo simulations supports our theoretical findings and in an empirical example it is shown how the traditional FE estimator and the proposed kernel FE estimator lead to very different conclusions about inefficiency of Indonesian rice farmers.
Resumo:
The goal of a research programme Evidence Algorithm is a development of an open system of automated proving that is able to accumulate mathematical knowledge and to prove theorems in a context of a self-contained mathematical text. By now, the first version of such a system called a System for Automated Deduction, SAD, is implemented in software. The system SAD possesses the following main features: mathematical texts are formalized using a specific formal language that is close to a natural language of mathematical publications; a proof search is based on special sequent-type calculi formalizing natural reasoning style, such as application of definitions and auxiliary propositions. These calculi also admit a separation of equality handling from deduction that gives an opportunity to integrate logical reasoning with symbolic calculation.