978 resultados para Pulsed laser ablation in liquids
Resumo:
We describe the experimental apparatus and the methods to achieve Bose-Einstein condensation in 87Rb atoms. Atoms are first laser cooled in a standard double magneto-optical trap setup and then transferred into a QUIC trap. The system is brought to quantum degeneracy selectively removing the hottest atoms from the trap by radio-frequency radiation. We also present the main theoretical aspects of the Bose-Einstein condensation phenomena in atomic gases.
Resumo:
The structure of thin films composed of a multilayer of PbTe nanocrystals embedded in SiO(2), named as PbTe(SiO(2)), between homogeneous layers of amorphous SiO(2) deposited on a single-crystal Si( 111) substrate was studied by grazing-incidence small-angle X-ray scattering (GISAXS) as a function of PbTe content. PbTe(SiO(2))/SiO(2) multilayers were produced by alternately applying plasma-enhanced chemical vapour deposition and pulsed laser deposition techniques. From the analysis of the experimental GISAXS patterns, the average radius and radius dispersion of PbTe nanocrystals were determined. With increasing deposition dose the size of the PbTe nanocrystals progressively increases while their number density decreases. Analysis of the GISAXS intensity profiles along the normal to the sample surface allowed the determination of the period parameter of the layers and a structure parameter that characterizes the disorder in the distances between PbTe layers. (C) 2010 International Union of Crystallography Printed in Singapore - all rights reserved
Resumo:
Atomic clouds prepared in ""timed Dicke"" states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully et al., Phys. Rev. Lett. 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.
Resumo:
The structure of laser glasses in the system (Y(2)O(3))(0.2){(Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 <= x <= 0.40) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as electron spin echo envelope modulation (ESEEM) of Yb-doped samples. The latter technique has been applied for the first time to an aluminoborate glass system. (11)B magic-angle spinning (MAS)-NMR spectra reveal that, while the majority of the boron atoms are three-coordinated over the entire composition region, the fraction of three-coordinated boron atoms increases significantly with increasing x. Charge balance considerations as well as (11)B NMR lineshape analyses suggest that the dominant borate species are predominantly singly charged metaborate (BO(2/2)O(-)), doubly charged pyroborate (BO(1/2)(O(-))(2)), and (at x = 0.40) triply charged orthoborate groups. As x increases along this series, the average anionic charge per trigonal borate group increases from 1.38 to 2.91. (27)Al MAS-NMR spectra show that the alumina species are present in the coordination states four, five and six, and the fraction of four-coordinated Al increases markedly with increasing x. All of the Al coordination states are in intimate contact with both the three-and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, non-segregated glass structure. (89)Y solid state NMR spectra show a significant chemical shift trend, reflecting that the second coordination sphere becomes increasingly ""aluminate-like'' with increasing x. This conclusion is supported by electron spin echo envelope modulation (ESEEM) data of Yb-doped glasses, which indicate that both borate and aluminate species participate in the medium range structure of the rare-earth ions, consistent with a random spatial distribution of the glass components.
Resumo:
We review the description of noise in electronic circuits in terms of electron transport. The Poisson process is used as a unifying principle. In recent years, much attention has been given to current noise in light-emitting diodes and laser diodes. In these devices, random events associated with electron transport are correlated with photon emission times, thus modifying both the current statistics and the statistics of the emitted light. We give a review of experiments in this area with special emphasis on the ability of such devices to produce subshot-noise currents and light beams. Finally we consider the noise properties of a class of mesoscopic devices based on the quantum tunnelling of an electron into and out of a bound state. We present a simple quantum model of this process which confirms that the current noise in such a device should be subshot-noise.
Resumo:
Control of chaos in the single-mode optically pumped far-infrared (NH3)-N-15 laser is experimentally demonstrated using continuous time-delay control. Both the Lorenz spiral chaos and the detuned period-doubling chaos exhibited by the laser have been controlled. While the laser is in the Lorenz spiral chaos regime the chaos has been controlled both such that the laser output is cw, with corrections of only a fraction of a percent necessary to keep it there, and to period one. The laser has also been controlled while in the period-doubling chaos regime, to both the period-one and -two states.
Resumo:
Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr3+-doped ZBLAN reveals that much of the broad resonance extending from g(eff) = 5.1 to g(eff) = 1.97, characteristic of X-band continuous wave EPR of Cr3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra.
Resumo:
The squeezing properties of the fluorescence field emitted by a two-level atom driven by a coherent laser field in a squeezed vacuum are calculated. We show that in the region of the anomalous resonance fluorescence the emitted field exhibits squeezing that is much larger than that in the input squeezed vacuum. The squeezing spectrum attains a minimum value that corresponds to 75% squeezing. We also find that, in the total fluorescence field, squeezing attains an optimum achievable value in the fluorescence field emitted by a two-level atom. The optimum squeezing is associated with the collapse of the system into a pure state. (C) 1997 Optical Society of America.
Resumo:
PURPOSE: To investigate the combined effects of ethanol and mitomycin C (MMC) application on the corneal stroma of rabbits that underwent photorefractive keratectomy (PRK). METHODS: Twenty-four rabbits (24 eyes) underwent PRK to correct -9.00 diopters of myopia. Twelve eyes had ethanol application before removing the epithelium and 12 eyes had the epithelium manually removed without ethanol, Eyes in both groups had topical MMC 0.02% application for 12 seconds immediately after excimer laser ablation. Twelve rabbits were sacrificed at two time points-4 hours and 4 weeks after surgery-and immunohistochemistry was performed with TUNEL assay, alpha-smooth muscle actin (alpha-SMA), and DAPI. RESULTS: More TUNEL-positive cells were observed in the ethanol-treated group compared to the mechanical debridement group at 4 hours after surgery (P<.01). No significant difference in alpha-SMA-positive cells was detected, between the two groups at 4 weeks after sugery. However, decreased keratocyte density in the anterior stroma was more pronounced in the ethanol-treated group compared to the mechanical debridement (P<.02). CONCLUSIONS: Ethanol application for epithelial removal during PRK seems to produce a synergistic effect with MMC, resulting in fewer keratocytes in the anterior stroma of rabbit corneas treated with MMC and ethanol than in corneas treated with MMC alone after PRK.
Resumo:
Objective: To develop an animal model of endometrial ablation, and to evaluate the histologic effects of trichloroacetic acid (TCA) in the uterine cavity. Design: Experimental prospective. Setting: Department of gynecology. Patient(s): Thirty female adult rats. Intervention(s): Animals were submitted to injection of TCA in one uterine horn and saline solution in the other. Group 1 was sacrificed the day after the procedure. Group 2 was sacrificed in phase of diestrus. Superficial epithelia of the endometrium, stromal thickness, endometrial glands, and myometrium thickness were compared among the uterine horns of the same rats of group 1. The same evaluation was performed in group 2. Endometrial regeneration was evaluated. Main Outcome Measure(s): Histologic effects. Result(s): In group 1, histologic parameters showed endometrial destruction on TCA injected uterine horn. In group 2, four rats died after the procedure, and six rats had no viable material. In the rest of the group, TCA-injected uterine horns showed endometrial destruction. Superficial epithelia of the endometrium and stromal thickness were similar between TCA uterine horn from groups. However, the number of endometrial glands was higher in group 1. Conclusion(s): The study developed an experimental model for endometrial ablation. TCA acid is a potent agent for endometrial ablation in rat model. No endometrial regeneration was observed after recovery of cycle. (Fertil Steril (R) 2011; 95: 2418-21. (C) 2011 by American Society for Reproductive Medicine.)
Resumo:
Objective To report the experience with fetal cystoscopy and laser fulguration of posterior urethral values (PUV) for severe lower urinary tract obstruction (LUTO). Methods Between July 2006 and December 2008, fetal cystoscopy was offered to 23 patients whose fetuses presented with severe LUTO. favorable urinary analysis and gestational age <26 weeks. Fetal urinary biochemistry was evaluated before and after cystoscopy. All infants were followed 6-12 months after birth. Abnormal renal function was defined when serum creatinine higher than 50 mu mol/L (2 Standard Deviation) or the necessity of dialysis or renal transplantation. Autopsy was always performed whenever fetal or neonatal deaths occurred. Results Eleven patients decided to undergo fetal therapy and 12 elected to continue with expectant observation. There was no difference between both groups in gestation age at diagnosis and referral examinations. Urethral atresia was diagnosed in 4/11 (36.4%) fetuses by fetal cystoscopy. At 26 weeks, fetuses that were managed expectantly presented with worse urinary biochemistry results (p < 0.05). Survival rates and percentage of infants with normal renal function were significantly higher in the cystoscopic group than in the expectant group (P < 0.05). Conclusions Percutaneous fetal cystoscopy is feasible using a thinner special cannula for prenatal diagnosis and therapy of LUTO. Prenatal laser ablation of the PUV under cystoscopy may prevent renal function deterioration improving postnatal outcome. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Purpose: The objective of this in vitro study was to compare the degree of microleakage of composite restorations performed by lasers and conventional drills associated with two adhesive systems. Materials and Methods: Sixty bovine teeth were divided into 6 groups (n = 10). The preparations were performed in groups 1 and 2 with a high-speed drill (HID), in groups 3 and 5 with Er:YAG laser, and in groups 4 and 6 with Er,Cr:YSGG laser. The specimens were restored with resin composite associated with an etch-and-rinse two-step adhesive system (Single Bond 2 [SB]) (groups 1, 3, 4) and a self-etching adhesive (One-Up Bond F [OB]) (groups 2, 5, 6). After storage, the specimens were polished, thermocycled, immersed in 50% silver nitrate tracer solution, and then sectioned longitudinally. The specimens were placed under a stereomicroscope (25X) and digital images were obtained. These were evaluated by three blinded evaluators who assigned a microleakage score (0 to 3). The original data were submitted to Kruskal-Wallis and Mann-Whitney statistical tests. Results: The occlusal/enamel margins demonstrated no differences in microleakage for all treatments (p > 0.05). The gingival/dentin margins presented similar microleakage in cavities prepared with Er:YAG, Er,Cr:YSGG, and HD using the etch-and-rinse two-step adhesive system (SB) (p > 0.05); otherwise, both Er:YAG and Er,Cr:YSGG lasers demonstrated lower microleakage scores with OB than SB adhesive (p < 0.05). Conclusion: The microleakage score at gingival margins is dependent on the interaction of the hard tissue removal tool and the adhesive system used. The self-etching adhesive system had a lower microleakage score at dentin margins for cavities prepared with Er:YAG and Er,Cr:YSGG than the etch-and-rinse two-step adhesive system.
Resumo:
Objectives: The aims of the present study were to investigate whether irradiation with a CO(2) laser could prevent surface softening (i) in sound and (ii) in already softened enamel in vitro. Methods: 130 human enamel samples were obtained and polished with silicon carbide papers. They were divided into 10 groups (n = 13) receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C); and submitted to 2 different procedures: half of the groups was acid-softened before surface treatment and the other half after. Immersion in 1% citric acid was the acid challenge. Surface microhardness (SMH) was measured at baseline, after softening and after treatment. Additionally, fluoride uptake in the enamel was quantified. The data were statistically analysed by two-way repeated measurements ANOVA and post hoc comparisons at 5% significance level. Results: When softening was performed either before or after laser treatment, the L group presented at the end of the experiments SMH means that were not significantly different from baseline (p = 0.8432, p = 0.4620). Treatment after softening resulted for all laser groups in statistically significant increase in SMH means as compared to values after softening (p < 0.0001). Enamel fluoride uptake was significantly higher for combined laser-fluoride treatment than in control (p < 0.0001). Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3J/cm(2) (5 mu s, 226 Hz) not only significantly decreased erosive mineral loss (97%) but also rehardened previously softened enamel in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Raman spectroscopy has been used to investigate the structure of the molybdenum cofactor in DMSO reductase from Rhodobacter capsulatus. Three oxidized forms of the enzyme, designated 'redox cycled', 'as prepared', and DMSORmodD, have been studied using 752 nm laser excitation. In addition, two reduced forms of DMSO reductase, prepared either anaerobically using DMS or using dithionite, have been characterized. The 'redox cycled' form has a single band in the Mo=O stretching region at 865 cm(-1) consistent with other studies. This oxo ligand is found to be exchangeable directly with (DMSO)-O-18 or by redox cycling. Furthermore, deuteration experiments demonstrate that the oxo ligand in the oxidized enzyme has some hydroxo character, which is ascribed to a hydrogen bonding interaction with Trp 116. There is also evidence from the labeling studies for a modified dithiolene sulfur atom, which could be present as a sulfoxide. In addition to the 865 cm(-1) band, an extra band at 818 cm(-1) is observed in the Mo=O stretching region of the 'as prepared' enzyme which is not present in the 'redox cycled' enzyme. Based on the spectra of unlabeled and labeled DMS reduced enzyme, the band at 818 cm(-1) is assigned to the S=O stretch of a coordinated DMSO molecule. The DMSORmodD form, identified by its characteristic Raman spectrum, is also present in the 'as prepared' enzyme preparation but not after redox cycling. The complex mixture of forms identified in the 'as prepared' enzyme reveals a substantial degree of active site heterogeneity in DMSO reductase.
Resumo:
Human V alpha 24NKT cells are activated by alpha -galactosylceramide (alpha -GalCer)-pulsed dendritic cells in a CD1d-dependent and a T-cell receptor-mediated manner. Here, we demonstrate that CD4(+)V alpha 24NKT cells derived from a patient with acute myeloid leukemia (AML) M4 are phenotypically similar to those of healthy donors and, in common with those derived from healthy donors, express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) when the cells are activated by alpha -GalCer-pulsed dendritic cells but not prior to activation. We also show that myeloid that human activated CD4(+)V alpha 24NKT cells induced apoptosis of human leukemia cells in vivo. This is the first evidence that activated V alpha 24NKT cells express TRAIL and that TRAIL causes apoptosis of monocytic leukemia cells from patients with AML M4 in vitro and in vivo. Adoptive immune therapy with activated V alpha 24NKT cells, or other strategies to increase activated V alpha 24NKT cells in vivo, may be of benefit to patients with AML M4.