933 resultados para Properties of Materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the properties of BaBi2Ta2O9 (BBT) thin films for dynamic random-access memory (DRAM) and integrated capacitor applications. Crystalline BBT thin films were successfully fabricated by the chemical solution deposition technique on Pt-coated Si substrates at a low annealing temperature of 650°C. The films were characterized in terms of structural, dielectric, and insulating properties. The electrical measurements were conducted on Pt/BBT/Pt capacitors. The typical measured small signal dielectric constant and dissipation factor, at 100 kHz, were 282 and 0.023, respectively, for films annealed at 700°C for 60 min. The leakage current density of the films was lower than 10-9 A/cm2 at an applied electric field of 300 kV/cm. A large storage density of 38.4 fC/μm2 was obtained at an applied electric field of 200 kV/cm. The high dielectric constant, low dielectric loss and low leakage current density suggest the suitability of BBT thin films as dielectric layer for DRAM and integrated capacitor applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferroelectric barium titanate thin films were produced by the polymeric precursor method. In this technique, the desired metal cations are chelated in a solution using a hydroxycarboxylic acid as the chelating agent. Barium carbonate and titanium IV isopropoxide were used as precursors for the citrate solution. Ethylene glycol and citric acid were used as polymerization/complexation agents for the process. The crystalline structure of the film annealed at 700 °C had a single perovskite phase with a tetragonal structure. The BaTiO3 film showed good P-E hysteresis loops and C-V characteristics due to the switched ferroelectric domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin dioxide is an n-type semiconductor that when doped with other metallic oxides exhibits non-linear electric behavior with high non-linear coefficient values typical of a varistor. In this work, electrical properties of the SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 ceramics systems were studied with the objective of analyzing the influence of MnO2 on sintering behavior and electrical properties of these systems. The compacts were prepared by powder mixture process and sintered at 1300°C for 1 hour, in air, using a constant heating rate of 10°C/min. The morphological and structural properties were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The densities of the sintered ceramics were measured using the Archimedes method. The SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 systems presented breakdown fields (Eb) about 3100 V.cm-1 and 3800 V.cm-1, respectively, and non-linear coefficient (α) about 10 and 20, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium barium niobate (SBN) thin films were crystallized by conventional electric furnace annealing and by rapid-thermal annealing (RTA) at different temperatures. The average grain size of films was 70 nm and thickness around 500 nm. Using x-ray diffraction, we identified the presence of polycrystalline SBN phase for films annealed from 500 to 700 °C in both cases. Phases such as SrNb2O6 and BaNb2O6 were predominantly crystallized in films annealed at 500 °C, disappearing at higher temperatures. Dielectric and ferroelectric parameters obtained from films crystallized by conventional furnace and RTA presented essentially the same values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spindle-type iron fine particles have been prepared by reduction of silica-coated-hematite particles. Hydrogen reduction of the coated-hematite cores yielded uniform spindle-type iron particles, which were stabilized by surface oxidation. Narrow particle distributions are observed from TEM measurements. X-ray, Mössbauer and magnetization data are in agreement with the presence of nanosized α-Fe particles, having surface layer of spinel structure oxide. Mössbauer spectra show that the oxide surface is superparamagnetic at room temperature. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum matrix composites are currently considered as promising materials for tribological applications in the automotive, aircraft and aerospace industries due to their great advantage of a high strength-to-weight ratio. A superior combination of surface and bulk mechanical properties can be attained if these composites are processed as functionally graded materials (FGM's). In this work, homogeneous aluminum based matrix composite, cast by gravity, and aluminum composites with functionally graded properties, obtained by centrifugal cast, are tested against nodular cast iron in a pin-on-disc tribometer. Three different volume fractions of SiC reinforcing particles in each FGM were considered in order to evaluate their friction and wear properties. The sliding experiments were conducted without lubrication, at room temperature, under a normal load of 5 N and constant sliding speed of 0.5 ms-1. The worn surfaces as well as the wear debris were characterized by SEM/EDS and by atomic force microscopy (AFM). The friction coefficient revealed a slightly decrease (from 0.60 to 0.50) when FGM's are involved in the contact instead of the homogeneous composite. Relatively low values of the wear coefficient were obtained for functionally graded aluminum matrix composites (≈10-6 mm3N-1 m-1), which exhibited superior wear resistance than the homogeneous composite and the opposing cast iron surface. Characterization of worn surfaces indicated that the combined effect of reinforcing particles as load bearing elements and the formation of protective adherent iron-rich tribolayers has a decisive role on the friction and wear properties of aluminum matrix composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphological, mechanical and rheological properties of nylon 6/acrylonitrile-butadiene-styrene blends compatibilized with MMA-MA [poly(methyl methacrylate-comaleic anhydride)] copolymers were studied. A twin screw extruder was used for melt-blended the polymers and the injection moulding process was used to mold the samples. The main focus was on nylon 6/ ABS blends compatibilized with one MMA-MA copolymer. This copolymer has PMMA segments that appear to be miscible with the styrene-acrylonitrile (SAN) phase of ABS and the anhydride groups can react with amine end groups of the nylon 6 (Ny6) to form graft copolymers at the interface between Ny6 and ABS rich phases. Tensile and impact and morphological properties were enhanced by the incorporation of this copolymer. Transmission electron microscopy (TEM) observations revealed that the ABS domains are finely dispersed in nylon 6 matrix and led to the lowest ductile-brittle transition temperatures and highest impact properties. It can be concluded that the MMA-MA copolymer is an efficient alternative for the reactive compatibilization and can be used as a compatibilizer for nylon 6/ABS blends.© 2003 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nylon6/ABS binary blends are incompatible and need to be compatibilized to achieve better performance under impact tests. Poly(methyl methacrylate/maleic anhydride) (MMA-MA) is used in this work to compatibilize in situ nylon6/ABS immiscible blends. The MA functional groups, from MMA-MA copolymers, react with NH2 groups giving as products nylon molecules grafted to MMA-MA molecules. Those molecular species locate in the nylon6/ABS blend interfacial region increasing the local adhesion. MMA-MA segments are completely miscible with the SAN rich phase from the ABS. The aim of this work is to study the effects of ABS and compatibilizing agent on the melting and crystallization of nylon6/ABS blends. This effect has been investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Incorporation of this compatibilizer and ABS showed little effect on the melting behavior of the PA6 crystalline phase, in general. DMTA analysis confirmed the system immiscibility and showed evidence of compatibility between the two phases, nylon6 and ABS, produced by MMA-MA copolymer presence. The nylon6/ABS blend morphology, observed by transmission electron microscopy (TEM), changes significantly by the addition of the MMA-MA compatibilizer. A better dispersion of ABS in the nylon6 phase is observed. © 2004 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead zirconate titanate (PZT) solutions were prepared using a polymeric precursor method, Zr n-propoxide and Ti i-propoxide were used as starting materials with ethylene glycol and water as solvents. The PZT solution was spin-coated on Pt/Ti/SiO2/Si substrates, baked on a hot plate, and finally heat-treated in a tube furnace between 400 and 800°C. The surface morphology and grain size of the films were characterized by atomic force microscopy (AFM), using a tapping mode with amplitude modulation. The films, thermal annealed at temperatures higher than 500°C, exhibited a dense microstructure, without noticeable cracks or voids. Electrical properties were investigated as a function of composition and annealing temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is very important for the building of the SAW devices to study dielectric and ferroelectrics properties because every SAW device is based in piezoelectric effect that it is made up to transform an electric sign in the mechanical or acoustic sign and a mechanical or acoustic sign in an electric sign. Thus, the purpose of the present work is to prepare PbZr 0,53Ti0.47O3 (PZT) and PbTiO3 (PT) thin films on the Si (100) substrates across spin-coating using a chemical method based in polymeric precursors. After conventional treatment in the furnace, the films were characterized by impedance spectroscopy and hysteresis loops to know its dielectric and ferroelectric properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation of antimony polyphosphate using Sb2O3 and/or (NH4)2HPO4 and NH4H 2PO4 as starting materials has been simulated by thermal analysis technique. The elimination of water and ammonia molecules induced by heating leads to the formation of intermediate ammonium polyphosphate, which subsequently reacts with Sb2O3. Morphologically, vitreous Sb(PO3)3 is composed of plaques having irregular shapes. Infrared spectra and NMR study is consistent with tetrametaphosphate anion arrangement. The compound is thermally unstable and may be recommended as a donor of -O-P-O- linkers in the preparation of special phosphate glasses. © 2005 Akadémiai Kiadó, Budapest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To evaluate the release of calcium ions, pH and conductivity of a new experimental dental cement (EC) and to compare them with those of mineral trioxide aggregate (MTA-Angelus). Methodology: Five samples of each cement were prepared using plastic tubes 1 mm in diameter and 10 mm long. Each sample was sealed in a test tube containing 10 mL deionized water which was analysed after 24, 48, 72, 96, 192, 240 and 360 h for pH, electrical conductivity and calcium release. The concentration of calcium ions was obtained through atomic absorption spectroscopy technique. The data were analysed statistically using the analysis of variance (ANOVA) and the Student's test (t-test). Results: The pH of the storage solutions was not affected by the material and the interaction of material with time (P > 0.05). However, the time of immersion was significant (P < 0.01) for both materials. For the electric conductivity and calcium release, the interaction of material with time was statistically significant (P < 0.01), indicating that EC and MTA-Angelus did not behave in a similar manner. Conclusions: The experimental cement released calcium and increased the pH of the storage solutions in a similar manner to MTA-Angelus. However, EC showed significantly higher calcium release than commercial MTA-Angelus after 24 h. © 2005 International Endodontic Journal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compaction rate, the relation between the density of the wood panel and the density of the wood used for producing the particles, is an indicator of the product's densification. Among the various types of wood panels, particleboards are widely employed in the lumber industry, mainly for the furniture production. This paper presents a study of the relation between the compaction rate and the properties of tensile strength perpendicular to surface, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) obtained from a static bending test, thickness swelling and water absorption (2 and 24 hours). These properties were calculated according to the Brazilian ABNT, NBR 14810 standard. Particleboards were produced using the species Pinus elliotti and adhesive ureaformaldehyde. The relation was established by a multiple linear regression, and the most appropriate statistical models were determined. The estimated models indicate statistically significant effects of water absorption in 2 hours and MOR in the particleboards' compaction rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nylon6 is an attractive polymer for engineering applications because it has reactive functionality through amine and carboxyl end groups that are capable of reacting. For this reason, it has been used a lot in polymeric blends. Blends of nylon6/ABS (acrylonitrile-butadiene-styrene) were produced using glycidyl methacrylate-methyl methacrylate (GMA-MMA) copolymers as compatibilizer. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable coarse phase morphology and weak interfaces between the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the ABS phase and consequently optimized Izod impact properties. However, the compatibilized blend showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2005 Springer Science + Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New materials, based on the well-known spinel compound NiMn 2O4, have been synthesized and characterized from the magnetic point of view. The manganese cation was partially substituted in the general formula NiMn2-xMexO4, by nonmagnetic and magnetic elements, such as Me = Ga, Zn, Ni and Cr (0 × 1). Prior to the determination of their magnetic properties, the non-substituted spinel NiMn2O4 was carefully characterized and studied as a function of the oxygen stoichiometry, based on the influence of the annealing atmosphere and quenching rate. The ferrimagnetic character was observed in all samples, with a paramagnetic-to-ferromagnetic transition temperature T c stabilized at 110 K, and well defined long-range antiferromagnetic interactions at lower temperatures, which depend on the applied field and the substitute concentration. © 2006 Sociedad Chilena de Química.