934 resultados para Power-law contribution
Resumo:
Deposition of insoluble prion protein (PrP) in the brain in the form of protein aggregates or deposits is characteristic of the ‘transmissible spongiform encephalopathies’ (TSEs). Understanding the growth and development of PrP aggregates is important both in attempting to elucidate the pathogenesis of prion disease and in the development of treatments designed to inhibit the spread of prion pathology within the brain. Aggregation and disaggregation of proteins and the diffusion of substances into the developing aggregates (surface diffusion) are important factors in the development of protein deposits. Mathematical models suggest that if either aggregation/disaggregation or surface diffusion is the predominant factor, then the size frequency distribution of the resulting protein aggregates will be described by either a power-law or a log-normal model respectively. This study tested this hypothesis for two different populations of PrP deposit, viz., the diffuse and florid-type PrP deposits characteristic of patients with variant Creutzfeldt-Jakob disease (vCJD). The size distributions of the florid and diffuse deposits were fitted by a power-law function in 100% and 42% of brain areas studied respectively. By contrast, the size distributions of both types of aggregate deviated significantly from a log-normal model in all areas. Hence, protein aggregation and disaggregation may be the predominant factor in the development of the florid deposits. A more complex combination of factors appears to be involved in the pathogenesis of the diffuse deposits. These results may be useful in the design of treatments to inhibit the development of PrP aggregates in vCJD.
Resumo:
Much research is currently centred on the detection of damage in structures using vibrational data. The work presented here examined several areas of interest in support of a practical technique for identifying and locating damage within bridge structures using apparent changes in their vibrational response to known excitation. The proposed goals of such a technique included the need for the measurement system to be operated on site by a minimum number of staff and that the procedure should be as non-invasive to the bridge traffic-flow as possible. Initially the research investigated changes in the vibrational bending characteristics of two series of large-scale model bridge-beams in the laboratory and these included ordinary-reinforced and post-tensioned, prestressed designs. Each beam was progressively damaged at predetermined positions and its vibrational response to impact excitation was analysed. For the load-regime utilised the results suggested that the infuced damage manifested itself as a function of the span of a beam rather than a localised area. A power-law relating apparent damage with the applied loading and prestress levels was then proposed, together with a qualitative vibrational measure of structural damage. In parallel with the laboratory experiments a series of tests were undertaken at the sites of a number of highway bridges. The bridges selected had differing types of construction and geometric design including composite-concrete, concrete slab-and-beam, concrete-slab with supporting steel-troughing constructions together with regular-rectangular, skewed and heavily-skewed geometries. Initial investigations were made of the feasibility and reliability of various methods of structure excitation including traffic and impulse methods. It was found that localised impact using a sledge-hammer was ideal for the purposes of this work and that a cartridge `bolt-gun' could be used in some specific cases.
Resumo:
This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.
Resumo:
An experimental investigation into the Acoustic Emission (AE) response of sand has been undertaken, and the use of AE as a method of yield point identification has been assessed. Dense, saturated samples of sand were tested in conventional triaxial apparatus. The measurements of stresses and strains were carried out according to current research practice. The AE monitoring system was integrated with the soil mechanics equipment in such a way that sample disturbance was minimised. During monotonically loaded, constant cell pressure tests the total number of events recorded was found to increase at an increasing rate in a manner which may be approximated by a power law. The AE response of the sand was found to be both stress level and stress path dependent. Undrained constant cell pressure tests showed that, unlike drained tests, the AE event rate increased at an increasing rate; this was shown to correlate with the mean effective stress variation. The stress path dependence was most noticeable in extension tests, where the number of events recorded was an order of magnitude less than that recorded in comparable compression tests. This stress path dependence was shown to be due to the differences in the work done by the external stresses. In constant cell pressure tests containing unload/reload cycles it was found that yield could be identified from a discontinuity in the event rate/time curve which occurred during reloading. Further tests involving complex stress paths showed that AE was a useful method of yield point identification. Some tests involving large stress reversals were carried out, and AE identified the inverse yield points more distinctly than conventional methods of yield point identification.
Resumo:
Fatigue crack initiation and propagation in aluminium butt welds has been investigated. It is shown that the initiation of cracks from both buried defects and. from the weld reinforcement may be quantified by predictive laws based on either linear elastic fracture mechanics, or on Neuber's rule of stress and strain ooncentrations. The former is preferable on the grounds of theoretical models of crack tip plasticity, although either may be used as the basis of an effeotive design criteria against crack initiation. Fatigue lives fol1owing initiation were found to follow predictions based on the integration of a Paris type power law. The effect of residual stresses from the welding operation on both initiation and propagation was accounted for by a Forman type equation. This incorporated the notional stress ratio produced by the residual stresses after various heat treatments. A fracture mechanics analysis was found to be useful in describing the fatigue behaviour of the weldments at increased temperatures up to 300°C. It is pointed out, however, that the complex interaction of residual stresses, frequency, and changes in fracture mode necessitate great caution in the application of any general design criteria against crack initiation and growth at elevated. temperatures.
Resumo:
We introduce a continuum model describing data losses in a single node of a packet-switched network (like the Internet) which preserves the discrete nature of the data loss process. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that such a model exhibits strong fluctuations in the loss rate at the critical point and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process. The continuum model allows for rather general incoming data packet distributions and can be naturally generalized to consider the buffer server idleness statistics.
Resumo:
Deposition of ß-amyloid (Aß ), a 'signature' pathological lesion of Alzheimer's disease (AD), is also characteristic of Down's syndrome (DS), and has been observed in dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). To determine whether the growth of Aß deposits was similar in these disorders, the size frequency distributions of the diffuse ('pre-amyloid'), primitive ('neuritic'), and classic ('dense-cored') A ß deposits were compared in AD, DS, DLB, and CBD. All size distributions had essentially the same shape, i.e., they were unimodal and positively skewed. Mean size of Aß deposits, however, varied between disorders. Mean diameters of the diffuse, primitive, and classic deposits were greatest in DS, DS and CBD, and DS, respectively, while the smallest deposits, on average, were recorded in DLB. Although the shape of the frequency distributions was approximately log-normal, the model underestimated the frequency of smaller deposits and overestimated the frequency of larger deposits in all disorders. A 'power-law' model fitted the size distributions of the primitive deposits in AD, DS, and DLB, and the diffuse deposits in AD. The data suggest: (1) similarities in size distributions of Aß deposits among disorders, (2) growth of deposits varies with subtype and disorder, (3) different factors are involved in the growth of the diffuse/primitive and classic deposits, and (4) log-normal and power-law models do not completely account for the size frequency distributions.
Resumo:
We present a stochastic agent-based model for the distribution of personal incomes in a developing economy. We start with the assumption that incomes are determined both by individual labour and by stochastic effects of trading and investment. The income from personal effort alone is distributed about a mean, while the income from trade, which may be positive or negative, is proportional to the trader's income. These assumptions lead to a Langevin model with multiplicative noise, from which we derive a Fokker-Planck (FP) equation for the income probability density function (IPDF) and its variation in time. We find that high earners have a power law income distribution while the low-income groups have a Levy IPDF. Comparing our analysis with the Indian survey data (obtained from the world bank website: http://go.worldbank.org/SWGZB45DN0) taken over many years we obtain a near-perfect data collapse onto our model's equilibrium IPDF. Using survey data to relate the IPDF to actual food consumption we define a poverty index (Sen A. K., Econometrica., 44 (1976) 219; Kakwani N. C., Econometrica, 48 (1980) 437), which is consistent with traditional indices, but independent of an arbitrarily chosen "poverty line" and therefore less susceptible to manipulation. Copyright © EPLA, 2010.
Resumo:
Areolae of the crustose lichen Rhizocarpon geographicum (L.) DC., are present on the peripheral prothallus (marginal areolae) and also aggregate to form confluent masses in the centre of the thallus (central areolae). To determine the relationships between these areolae and whether growth of the peripheral prothallus is dependent on the marginal areolae, the density, morphology, and size frequency distributions of marginal areolae were measured in 23 thalli of R. geographicum in north Wales, UK using image analysis (Image J). Size and morphology of central areolae were also studied across the thallus. Marginal areolae were small, punctate, and occurred in clusters scattered over the peripheral prothallus while central areolae were larger and had a lobed structure. The size-class frequency distributions of the marginal and central areolae were fitted by power-law and log-normal models respectively. In 16 out of 23 thalli, central areolae close to the outer edge were larger and had a more complex lobed morphology than those towards the thallus centre. Neither mean width nor radial growth rate (RaGR) of the peripheral prothallus were correlated with density, diameter, or area fraction of marginal areolae. The data suggest central areolae may develop from marginal areolae as follows: (1) marginal areolae develop in clusters at the periphery and fuse to form central areolae, (2) central areolae grow exponentially, and (3) crowding of central areolae results in constriction and fragmentation. In addition, growth of the peripheral prothallus may be unrelated to the marginal areolae. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Particle breakage due to fluid flow through various geometries can have a major influence on the performance of particle/fluid processes and on the product quality characteristics of particle/fluid products. In this study, whey protein precipitate dispersions were used as a case study to investigate the effect of flow intensity and exposure time on the breakage of these precipitate particles. Computational fluid dynamic (CFD) simulations were performed to evaluate the turbulent eddy dissipation rate (TED) and associated exposure time along various flow geometries. The focus of this work is on the predictive modelling of particle breakage in particle/fluid systems. A number of breakage models were developed to relate TED and exposure time to particle breakage. The suitability of these breakage models was evaluated for their ability to predict the experimentally determined breakage of the whey protein precipitate particles. A "power-law threshold" breakage model was found to provide a satisfactory capability for predicting the breakage of the whey protein precipitate particles. The whey protein precipitate dispersions were propelled through a number of different geometries such as bends, tees and elbows, and the model accurately predicted the mean particle size attained after flow through these geometries. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
We suggest a model for data losses in a single node (memory buffer) of a packet-switched network (like the Internet) which reduces to one-dimensional discrete random walks with unusual boundary conditions. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that for a finite-capacity buffer at the critical point the loss rate exhibits strong fluctuations and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process.
Resumo:
This paper resolves the long standing debate as to the proper time scale τ of the onset of the immunological synapse bond, the noncovalent chemical bond defining the immune pathways involving T cells and antigen presenting cells. Results from our model calculations show τ to be of the order of seconds instead of minutes. Close to the linearly stable regime, we show that in between the two critical spatial thresholds defined by the integrin:ligand pair (Δ2∼ 40-45 nm) and the T-cell receptor TCR:peptide-major-histocompatibility-complex pMHC bond (Δ1∼ 14-15 nm), τ grows monotonically with increasing coreceptor bond length separation δ (= Δ2-Δ1∼ 26-30 nm) while τ decays with Δ1 for fixed Δ2. The nonuniversal δ-dependent power-law structure of the probability density function further explains why only the TCR:pMHC bond is a likely candidate to form a stable synapse.
Resumo:
Implementation of a Monte Carlo simulation for the solution of population balance equations (PBEs) requires choice of initial sample number (N0), number of replicates (M), and number of bins for probability distribution reconstruction (n). It is found that Squared Hellinger Distance, H2, is a useful measurement of the accuracy of Monte Carlo (MC) simulation, and can be related directly to N0, M, and n. Asymptotic approximations of H2 are deduced and tested for both one-dimensional (1-D) and 2-D PBEs with coalescence. The central processing unit (CPU) cost, C, is found in a power-law relationship, C= aMNb0, with the CPU cost index, b, indicating the weighting of N0 in the total CPU cost. n must be chosen to balance accuracy and resolution. For fixed n, M × N0 determines the accuracy of MC prediction; if b > 1, then the optimal solution strategy uses multiple replications and small sample size. Conversely, if 0 < b < 1, one replicate and a large initial sample size is preferred. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2394–2402, 2015
Resumo:
GitHub is the most popular repository for open source code (Finley 2011). It has more than 3.5 million users, as the company declared in April 2013, and more than 10 million repositories, as of December 2013. It has a publicly accessible API and, since March 2012, it also publishes a stream of all the events occurring on public projects. Interactions among GitHub users are of a complex nature and take place in different forms. Developers create and fork repositories, push code, approve code pushed by others, bookmark their favorite projects and follow other developers to keep track of their activities. In this paper we present a characterization of GitHub, as both a social network and a collaborative platform. To the best of our knowledge, this is the first quantitative study about the interactions happening on GitHub. We analyze the logs from the service over 18 months (between March 11, 2012 and September 11, 2013), describing 183.54 million events and we obtain information about 2.19 million users and 5.68 million repositories, both growing linearly in time. We show that the distributions of the number of contributors per project, watchers per project and followers per user show a power-law-like shape. We analyze social ties and repository-mediated collaboration patterns, and we observe a remarkably low level of reciprocity of the social connections. We also measure the activity of each user in terms of authored events and we observe that very active users do not necessarily have a large number of followers. Finally, we provide a geographic characterization of the centers of activity and we investigate how distance influences collaboration.
Resumo:
In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analysing network failures caused by hardware faults or overload. There network reaction was modelled as rerouting of traffic away from failed or congested elements. Here we model network reaction to congestion on much shorter time scales when the input traffic rate through congested routes is reduced. As an example we consider the Internet where local mismatch between demand and capacity results in traffic losses. We describe the onset of congestion as a phase transition characterised by strong, albeit relatively short-lived, fluctuations of losses caused by noise in input traffic and exacerbated by the heterogeneous nature of the network manifested in a power-law load distribution. The fluctuations may result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © 2013 IEEE.