987 resultados para Potato Ipomoea-batatas
Resumo:
The members of the epidermal growth factor (EGF)/ErbB family are prime targets for cancer therapy. However, the therapeutic efficiency of the existing anti-ErbB agents is limited. Thus, identifying new molecules that inactivate the ErbB receptors through novel strategies is an important goal on cancer research. In this study we have developed a shorter form of human EGF (EGFt) with a truncated C-terminal as a novel EGFR inhibitor. EGFt was designed based on the superimposition of the three-dimensional structures of EGF and the Potato Carboxypeptidase Inhibitor (PCI), an EGFR blocker previously described by our group. The peptide was produced in E. coli with a high yield of the correctly folded peptide. EGFt showed specificity and high affinity for EGFR but induced poor EGFR homodimerization and phosphorylation. Interestingly, EGFt promoted EGFR internalization and translocation to the cell nucleus although it did not stimulate the cell growth. In addition, EGFt competed with EGFR native ligands, inhibiting the proliferation of cancer cells. These data indicate that EGFt may be a potential EGFR blocker for cancer therapy. In addition, the lack of EGFR-mediated growth-stimulatory activity makes EGFt an excellent delivery agent to target toxins to tumours over-expressing EGFR.
Resumo:
Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems.
Resumo:
The aim of this study is to determine the influence of frying time on the alterations of sunflower, corn and soybean oils during deep fat frying of potato chips. The analytical methods used to evaluate the oil alterations are: free fatty acids, peroxide value, refractive index and total polar compounds. An increase of free fatty acids, refractive index and total polar compounds with frying time were observed. The different behaviors observed for the three vegetables oils can be explained by the differences in the initial composition and quality of them.
Resumo:
Ethanol is the most suitable substitute for oil-based fuels. The performance of the fermentation is affected by several factors, therefore the aim of this work was to evaluate the efficiency of the fermentation of a hydrolyzed must of sweet potato using three strains of the Saccharomyces cerevisiae. It was also evaluated the effect of three forms of the processes conduction in the fermentation yield, efficiency and viability of yeast at the end process. Among the parameters evaluated, only the cell viability showed significant difference. The strain PE-2 would be the most suitable for the fermentation of the hydrolysed sweet potato.
Resumo:
This work was developed to adapt culture filtrates of Alternaria solani to be used in vitro selection of resistant potato. Three isolates of A. solani (I1 and I2) from Eldorado do Sul and Rio Pardo were used. Two liquid media, V8 and Czapek, were used to grow each of the fungal isolate, giving six culture filtrates (I1V8, I2V8, I3V8, I1Cz, I2Cz and I3Cz). Two sterilization forms, Millipore and autoclave were tested. There was no difference in these two sterilization forms. Tissue culture and toxic filtrates of A. solani have a potential to reduce the time in selection of resistant potato.
Resumo:
A presença das biovares I e/ou II de Ralstonia solanacearum em uma lavoura de batatas (Solanum tuberosum) tem influência direta no sucesso das medidas adotadas para controlar a murcha bacteriana. As biovares diferem entre si em relação à agressividade, latência e sobrevivência. Assim, um experimento de campo foi conduzido em uma área naturalmente infestada em duas épocas de cultivo com os objetivos de verificar (1) a incidência de biovares I e/ou II, (2) a relação entre biovar e época de plantio e (3) a relação entre biovar e cultivar de batata. Os isolados obtidos de plantas das cultivares Achat, Baronesa, Elvira, Macaca, Monte Bonito e Trapeira foram identificados como biovar I ou II através da PCR, utilizando os oligonucleotídeos iniciadores T3A e T5A. Ambas as biovares foram encontradas na área naturalmente infestada. De 73 isolados de R. solanacearum, 94,5% foram identificados como biovar II e 5,5% como biovar I. A biovar II foi isolada dos cultivos de primavera e de outono, independente da cultivar, mas a I apenas do cultivo de primavera e de plantas assintomáticas das cultivares Achat e Macaca. A maior população da biovar I nestas duas cultivares pode ser uma evidência da possível relação entre biovar e cultivar.
Resumo:
Fusarium solani f. sp. piperis (teleomorph: Nectria haematococca f. sp. piperis), causal agent of root rot and stem blight on black pepper (Piper nigrum), produces secondary metabolites with toxigenic properties, capable of inducing vein discoloration in detached leaves and wilting in transpiring microcuttings. Production of F. solani f. sp. piperis (Fsp) toxic metabolites reached a peak after 25 days of static incubation on potato sucrose broth at 25 ºC under illumination. Changes in the pH of the culture filtrate did not alter the effect of toxic metabolites. However, when the pH was changed before the medium had been autoclaved, a more intense biological response was observed, with an optimum at pH 6.0. Isolates that produced red pigments in liquid cultures were more efficient in producing biologically active culture filtrates than those which produced pink coloured or clear filtrates suggesting that these pigments could be related to toxigenic activity. Detached leaves of seven black pepper cultivars and Piper betle showed symptoms of vein discoloration after immersion in autoclaved and non-autoclaved Fsp culture filtrates indicating the thermostable nature of these toxic metabolites.
Resumo:
O gênero Erigeron (Asteraceae), de plantas da vegetação espontânea, encontra-se amplamente disseminado nas regiões Sul e Sudeste do Brasil, sendo freqüentemente encontrado em lavouras perenes e anuais. Plantas de E. bonariensis com sintoma de mosaico, típico do induzido por vírus, foram coletadas no município de São Paulo e submetidas a análises ao microscópio eletrônico de transmissão, testes biológicos, sorológicos e moleculares. Em cortes ultrafinos do tecido foliar original, observaram-se inclusões tubulares e cata-ventos dispersos no citoplasma. Através de inoculação mecânica, somente Chenopodium amaranticolor, C. quinoa, Nicotiana benthamiana e N. clevelandii foram infetadas. Os resultados obtidos em ELISA foram negativos quando se utilizaram antissoros contra o Turnip mosaic vírus (TuMV) e diferentes estirpes do Potato virus Y (PVY), constatando-se relacionamento sorológico com o Lettuce mosaic virus (LMV). Com a utilização de oligonucleotídeos específicos para LMV amplificaram-se fragmentos esperados de aproximadamente 280 pb, que seqüênciados confirmaram a identidade do vírus. A ocorrência do LMV em E. bonariensis, gênero da mesma família botânica da alface (Lactuca sativa), é de grande importância, pois talvez possa atuar como reservatório para infecção de campos de produção de alface. Este é o primeiro relato, no Brasil, de vírus infetando Erigeron sp., o qual só havia sido reportado como hospedeira natural do Bidens mottle virus (BiMoV) e do Tomato spotted wilt virus (TSWV) nos Estados Unidos.
Resumo:
Vinte isolados virais provenientes de Capsicum spp. foram coletados em Minas Gerais, São Paulo, Espírito Santo e Rio de Janeiro visando definir a etiologia dos mosaicos. Para a caracterização biológica realizou-se teste de gama de hospedeiros e inoculação em cultivares diferenciadoras de pimentão (Capsicum annuum). Dois isolados provenientes de batata (Solanum tuberosum) (PVY N-BR e PVY O-BR) foram utilizados como controles. Os resultados indicaram considerável grau de variabilidade biológica entre os isolados, embora todos tenham sido identificados preliminarmente como Potato virus Y (PVY). A reação das cultivares diferenciadoras classificou os isolados como patótipo 1 ou 1.2 de PVY. Anti-soros foram produzidos a partir de partículas virais purificadas de um isolado fraco e um forte. O uso desses anti-soros em ELISA indireto levou a resultados positivos contra os isolados testados. Os anti-soros reagiram também contra PVY N-BR e PVY O-BR, embora este último tenha apresentado reação mais fraca. Para caracterização molecular, seqüenciaram-se os genes da polimerase (NIb) e da proteína capsidial (cp), e da região 3' não-traduzida (3'NTR) de isolados biologicamente distintos. A análise filogenética confirmou a identidade de seis isolados como Pepper yellow mosaic virus (PepYMV), um potyvírus descrito recentemente infetando pimentão no Brasil. Esse resultado sugere que o PepYMV pode ser a espécie de potyvírus predominante em Capsicum spp. no Brasil. O fato de isolados de PepYMV apresentarem gama de hospedeiros semelhante à do PVY, e de os dois vírus apresentarem relacionamento sorológico, ressalta a utilidade da análise molecular para a classificação de potyvírus provenientes de Capsicum spp.
Resumo:
Determination of virus diversity in the field is vital to support a sustainable breeding program for virus resistance of horticultural crops. The present study aimed to characterize four field potyvirus isolates found naturally infecting sweet pepper (Capsicum annuum) (Sa66 and Sa115) and tomato (Lycopersicon esculentum) (IAC3 and Sa21) plants. Their biological characteristics revealed differences among the isolates in their ability to infect distinct Capsicum spp. and tomato genotypes, and in the severity of symptoms caused by these isolates compared to the infection caused by an isolate of Pepper yellow mosaic virus (PepYMV). Absence of cross-reaction was found among the studied isolates with antiserum against Potato virus Y (PVY). However, all isolates reacted, at different intensities, with antiserum against PepYMV. All isolates showed high identity percentage (97 to 99%) of the amino acid sequence of the coat protein with PepYMV (accession AF348610) and low (69 to 80%) with other potyvirus species. The comparison of the 3' untranslated region also confirmed this finding with 97 to 98% identity with PepYMV, and of 47 to 71% with other potyviruses. The results showed that PepYMV isolates were easily differentiated from PVY by serology and that the host response of each isolate could be variable. In addition, the nucleotide sequence of the coat protein and 3' untranslated region was highly conserved among the isolates.
Resumo:
O tomateiro, Lycopersicon esculentum Mill., hortaliça de grande importância econômica para o Brasil, apresenta muitos problemas fitossanitários, dentre os quais as viroses. Os vírus associados à cultura no país pertencem aos gêneros Begomovirus, mais frequentemente relatado, Potyvirus, Cucumovirus, Tospovirus e Tobamovirus. No Ceará, apesar de relatos da incidência de viroses em tomateiros na Chapada da Ibiapaba, maior região produtora do estado, há escassez de informações sobre a situação atual da ocorrência de begomovírus, nas diversas lavouras daquele agropólo. Assim, foram objetivos deste trabalho: realizar levantamento da presença de begomovírus nas cultivares e híbridos de tomateiro explorados comercialmente na Ibiapaba; verificar a ocorrência de plantas daninhas infectadas e investigar a transmissão artificial de begomovírus isolados de tomateiro e de plantas daninhas para tomateiro. Os testes sorológicos e a PCR realizados detectaram begomovírus em 'Alambra', 'Densus', 'Monalisa', 'Santa Clara', 'Sheila', 'Sofia', 'Raisa-N' e 'TY- Fanny', cultivares e híbridos mais cultivados nas lavouras. Além de begomovírus, Cucumber mosaic virus (CMV) e Potato virus Y (PVY) foram também detectados. As plantas daninhas Amaranthus spinosus, A. viridis, Ageratum conyzoides e Bidens pilosa foram identificadas como hospedeiras naturais de begomovírus. A transmissão de begomovírus de tomateiro para tomateiro ocorreu em inoculações por enxertia e via extrato foliar e de plantas daninhas infectadas para tomateiros sadios somente por enxertia. O levantamento revelou que, à semelhança do que ocorre no restante do país, begomovírus são predominantes nas lavouras de tomate da Ibiapaba e que as plantas invasoras ali encontradas podem ser fontes de infecção viral para a cultura.
Resumo:
Nanocellulose has much potential for enhancing the tensile strength of paper but it slows down significantly drainage, restricting its use in industrial scale. Main objective of the work was to find ways to improve the dewatering of nanocellulose-containing papers. The effects of cationic potato starch, microparticle system and filler addition on dewatering and such key properties as formation, tensile strength and air permeance of manufactured paper were studied. Test points had 0, 4 or 8 % CNF and 0, 15 or 30 % PCC content. Based on earlier studies, 25 mg/g starch dosage was added to some test points. Modern microparticle system, consisted of cationic polyacrylamide and amorphous silica, was used in few test points. Dosages for both components were 0.3 and 0.6 mg/g, following the recommendations of the supplier. Also, the influences of CNF and filler on drying behaviour after different stages (drainage, wet pressing and cylinder drying) were estimated. Following trends were observed. Starch does not have unambiguous influence on dewatering. In some cases, it improved drainage slightly but effects on the properties of end product were discovered small. Filler quickened dewatering but large proportions were noticed to be detrimental for the drainage, air permeance and tensile strength. Microparticle system improved drainage notably, especially if CNF dosage was high. In addition, microparticle system increased tensile strength and decreased air permeance. However, its effects on formation were detrimental. Dewatering of nanocellulose-containing furnishes is treatable up to a certain point. In the end, such drainage times that were measured from test points which consisted only of pure kraft pulps are awkward to reach.
Resumo:
Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.