976 resultados para Polymer Science
Resumo:
Optically active 2,2'-bis(2-trifluoro-4-aminophenoxy)-1,1'-binaphthyl and its corresponding racemate were prepared by a nucleophilic substitution reaction of 1,1'-bi-2-naphthol with 2-chloro-5-nitrotrifluorotoluene and subsequently by the reduction of the resulting dinitro compounds. a series of optically active and optically inactive aromatic polyimides also were prepared therefrom, These polymers readily were soluble in common organic solvents such as pyridine, N,N'-dimethylacetamide, and m-cresol and had glass-transition temperatures of 256 similar to 278 degrees C. The specific rotations of the chiral polymers ranged from 167 similar to 258 degrees, and their chiroptical properties also were studied. (C) 1999 John Wiley & Sons Inc.
Resumo:
The surface structure of the ring-banded spherulites in polymer blends PCL/SAN (90/10) was studied by optical microscopy, SEM, and TEM, respectively. It is interesting to find that the surface structure of the ring-banded spherulites in polymer blends PCL/SAN (90/10) is made up of the convex bands. The landscape of the convex bands on the surface has been little emphasized before. Radial fibrils are arranged on the bands. Details of the radial fibrils on the bands can be observed by TEM. The landscape of the convex bands on the surface and twisting of lamellae in the convex bands for PCL/SAN blends may be useful to explain the formation mechanism of the ring banded spherulites in polymer blends or even in homopolymers. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The crystallization behaviors, dynamic mechanical properties, tensile, and morphology features of polyamide1010 (PA1010) blends with the high-impact polystyrene (HIPS) were examined at a wide composition range. Both unmodified and maleicanhydride-(MA)-grafted HIPS (HIPS-g-MA) were used. It was found that the domain size of HIPS-g-MA was much smaller than that of HIPS at the same compositions in the blends. The mechanical performances of PA1010-HIPS-g-MA blends were enhanced much more than that of PA1010-HIPS blends. The crystallization temperature of PA1010 shifted towards higher temperature as HIPS-g-MA increased from 20 to 50% in the blends. For the blends with a dispersed PA phase (less than or equal to 35 wt %), the T-c of PA1010 shifted towards lower temperature, from 178 to 83 degrees C. An additional transition was detected at a temperature located between the T-g's of PA1010 and PS. It was associated with the interphase relaxation peak. Its intensity increased with increasing content of PA1010, and the maximum occurred at the composition of PA1010-HIPS-g-MA 80/20. (C) 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 857-865, 1999.
Resumo:
New aromatic diamines [(1) and (2)] containing polycycloalkane structures between two benzene rings were synthesized by HCl-catalyzed condensation reaction of aniline hydrochloride and corresponding polycycloalkanone derivatives. The structures of diamines were identified by H-1-NMR, C-13-NMR, FTIR spectroscopy, and elemental analysis. The polyimides were synthesized from the obtained diamines with various aromatic dianhydrides by one-step polymerization in m-cresol. The inherent viscosities of the resulting polyimides were in the range of 0.34-1.02 dL/g. The polyimides showed good thermal stabilities and solubility. All the polymers were readily soluble in N-methyl-2-pyrrolidone, m-cresol, tetrachloroethane, etc. Some of them were soluble even in chloroform at room temperature. The glass transition temperatures were observed in the range of 323-363 degrees C, and all of the polymers were stable up to 400 degrees C under nitrogen atmosphere. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Novel optically active aromatic poly(amide-imide)s (PAIs) were prepared from newly synthesized 2,2'-bis(3,4-dicarboxybenzamido)-1,1'-binaphyl dianhydride ((+/-)-, (S)-, and (R)-BNDADA). PAIs based on dianhydride monomers with different ee % were investigated with respect to their structures and chiroptical properties. These polymers were highly soluble in polar aprotic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, pyridine, etc., and showed high glas s transition temperatures of 287-290 degrees C and 5% weight loss temperatures of 450-465 degrees C in nitrogen. Optically active PAIs exhibited high specific rotations, excellent optical stabilities, and a dependence of optical activities on temperature. Investigations on chiroptical properties indicated that chiral conformation was possessed by optically active PAIs. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The interface behavior of polyamide 1010 (PA1010) and polypropylene (PP) was studied. In order to improve their interfacial adhesion, functional PP was prepared by means of grafting glycidyl methacrylate (GMA) on PP main chains and used instead of plain PP. Several technological characterizations were performed here on their interfaces. ESCA was used to confirm that some kind of reaction occurred between end groups of PA1010 and epoxy species of PP-g-GMA. The peel test was adopted to measure interfacial adhesion. It was found that the fracture energy of interfaces between PA1010 and PP-g-GMA was dramatically increased with the content of GMA. Their interfaces were observed as being blurred by using SEM and TEM and a crack that could be seen in the case of the interfaces of the PA1010 and the plain PP disappeared.
Resumo:
A series of copolyimides were prepared from 2,4,6-trimethyl-1,3-phenylenediamines (3MPDA), 3,3',4,4'-benzophenone tetracarboxyl dianhydride (BTDA), and pyromellitic dianhydride (PMDA). Modification of the copolyimides by ultraviolet irradiation were carried out. Gas permeabilities of H-2, O-2, and N-2 through the copolyimides and photochemically crosslinked copolyimides were measured at temperatures from 30 to 90 degrees C. The relationships between gas permeabilities and temperature are in agreement with the Arrhenius equation. The structure of photochemically crosslinked copolyimides were characterized by Fourier transform infrared and gel measurement methods. Linear relationships between both log P and E-p and the volume fraction of PMDA-3MPDA exist. Photochemically crosslinking modification result in a decrease in gas permeability and an increase in E-p and alpha(H-2/N-2) for all the copolyimides. For H-2/N-2 separation, photochemically crosslinked copolyimides are of higher gas permeabilities and permselectivities simultaneously than normal polyimides. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Optically active (R)-(+)-2, 2'-bis(2-trifluoro-4-aminophenoxy)-1, 1'-binaphthyl was prepared from 1, 1'-bi-2-naphthol. The optically active aromatic polyimide was also successfully synthesized. This new polymer has good solubility, thermal stability etc. Its specific rotation was found to be +174 degrees, and its chiroptical property was also studied.
Resumo:
By mechanism-transformation (anionic --> cationic) poly(styrene-6-2-ethyl-2-oxazoline) diblock copolymer, PS-b-PEOx, was synthesized in two steps. The first step is the polymerization of styrene block capped with ethylene oxide and its tosylation; the second step is the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. The products were thoroughly characterized by various methods, such as H-1-NMR, IR, DMA, TEM and SAXS. The results show that the copolymer obtained possesses high molecular weight and narrow molecular weight distribution.
Resumo:
A new crystal modification induced by strain and denoted as form II exists alongside the dominant form I structure in the uniaxially oriented poly(ether ether ketone) (PEEK) and the related polymers. The crystal structure of form II for PEEK is also found to possess a two-chain orthorhombic packing with unit cell parameters of a equal to 0.475 nm, b equal to 1.060 nm, and c equal to 1.086 nm. More extended and flattened chain conformation of form II relative to that of form I is expected to account for an 8% increase in c-axis dimension, which is attributed to the extensional deformation fixed in situ through strain-induced crystallization during uniaxial drawing. Annealing experiments suggest that form II is thermodynamically metastable and can be transformed into more stable form I by chain relaxation and reorganization at elevated temperature without external tension. This strain-induced polymorphism exists universally in the poly(aryl ether ketone) family. (C) 1999 John Wiley & Sons, Inc.
Resumo:
2,2,'3,3' -Biphenyltetracarboxylic dianhydride (2,2,'3,3'-BPDA) was prepared by a coupling reaction of dimethyl 3-iodophthalate. The X-ray single-crystal structure determination showed that this dianhydride had a bent and noncopolanar structure, presenting a striking contrast to its isomer, 3,3,'4,4'-BPDA. This dianhydride was reacted with aromatic diamines in a polar aprotic solvent such as N,N-dimethylacetamide (DMAc) to form polyamic acid intermediates, which imidized chemically to polyimides with inherent viscosities of 0.34-0.55 dL/g, depending on the diamine used. The polyimides from 2,2,'3,3'-BPDA exhibited a good solubility and were dissolved in polar aprotic solvents and polychlorocarbons. These polyimides have high glass transition temperatures above 283 degrees C. Thermogravimetric analyses indicated that these polyimides were fairly stable up to 500 degrees C, and the 5% weight loss temperatures were recorded in the range of 534-583 degrees C in nitrogen atmosphere and 537-561 degrees C in air atmosphere. All polyimides were amorphous according to X-ray determination. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Polyaniline is prepared by chemical polymerization of aniline in an acidic solution using H2O2 as an oxidant and ferrous chloride as a catalyst. A wide variety of synthesis parameters are studied, such as the amount of the catalyst, reaction temperature, reaction time, initial molar ratio of oxidant, monomer and catalyst, and aniline and HCl concentrations. The polymerization of aniline can be initiated by a very small amount of catalyst. The yield and the conductivity of product depend on the initial molar ratio of the oxidant and monomer. The polyaniline with a conductivity of about 10 degrees S/cm and a yield of 60% is prepared under optimum conditions. The process of polymerization was studied by in situ ultraviolet-visible spectroscopy and open-circuit potential technology. Compared to the polymerization process in a (NH4)(2)S2O8 system, the features of the H2O2-Fe2+ system are pointed out, and the chain growth mechanism is proposed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Noncompatibilized and compatibilized ABS-nylon1010 blends were prepared by melt mixing. Polystyrene and glycidyl methacrylate (SG) copolymer was used as a compatibilizer to enhance the interfacial adhesion and to control the morphology. This SG copolymer contains reactive glycidyl groups that are able to react with PA1010 end groups (-NH2 or -COOH) under melt conditions to form SG-g-Nylon copolymer. Effects of the compatibilizer SG on the rheological, thermal, and morphological properties were investigated by capillary rheometer, DSC, and SEM techniques. The compatibilized ABS-PA1010 blend has higher viscosity, lower crystallinity, and smaller phase domain compared to the corresponding noncompatibilized blend. (C) 1999 John Wiley & Sons, Inc.
Low-temperature relaxation of polymers around doped dyes studied by persistent spectral hole burning
Resumo:
Persistent spectral hole burning spectroscopy is applied to evaluate the low-temperature relaxation around the dye molecules doped in several types of polymers. The doped dye is tetraphenylporphine, and the measured polymers are vinyl polymers and main chain aromatic polymers. The changes of microscopic environments around the dye are evaluated from the changes in the hole profiles during temperature cycling experiments. The relaxation behavior of the polymers is discussed in relation to their chemical structures. (C) 1999 John Wiley & Sons, Inc.