900 resultados para Poliomyelitis vaccine
Resumo:
Vaccinology is a combinatorial science which studies the diversity of pathogens and the human immune system, and formulations that can modulate immune responses and prevent or cure disease. Huge amounts of data are produced by genomics and proteomics projects and large-scale screening of pathogen-host and antigen-host interactions. Current developments in computational vaccinology mainly support the analysis of antigen processing and presentation and the characterization of targets of immune response. Future development will also include systemic models of vaccine responses. Immunomics, the large-scale screening of immune processes which includes powerful immunoinformatic tools, offers great promise for future translation of basic immunology research advances into successful vaccines.
Resumo:
Many viruses including HIV, hepatitis C and hepatitis B, have an outer lipid envelope which maintains inserted viral peptides in the “correct” functional conformation and orientation. Disruption of the lipid envelope by most solvents destroys infectivity and often results in a loss of antigenicity. This communication outlines a novel approach to viral inactivation by specific solvent delipidation which modifies the whole virion rendering it non-infective, but antigenic. Duck hepatitis B virus (DHBV) was delipidated using a diisopropylether (DIPE) and butanol mixture and residual infectivity tested by inoculation into day-old ducks. Delipidation completely inactivated the DHBV (p < 0.001). Delipidated DHBV was then used to vaccinate ducks. Three doses of delipidated DHBV induced anti-DHBs antibody production and prevented high dose challenge infection in five out of six ducks. In comparison, five of six ducks vaccinated with undelipidated DHBV and four of four ducks vaccinated with glutaraldehyde inactivated DHBV were unprotected (p < 0.05). Although this solvent system completely inactivated DHBV, viral antigens were retained in an appropriate form to induce immunity. Delipidation of enveloped viruses with specific organic solvents has potential as the basis for development of vaccines.
Resumo:
An Australian newspaper recently bestowed Ian Frazer the title of God's gift to women for his research team's part in developing a vaccine to help control cervical cancer. Here Frazer discusses this work and the science behind the vaccine.
Resumo:
Schistosoma japonicum paramyosin, a 97 kDa myofibrillar protein, is a recognized vaccine candidate against schistosomiasis. To improve its expression and to identify protective epitopic regions on paramyosin, the published Chinese Schistosoma japonicum paramyosin cDNA sequence was redesigned using Pichia codon usage and divided into four overlapping fragments (fragments 1, 2, 3, 4) of 747, 651, 669 and 678 bp, respectively. These gene fragments were synthesized and expressed in Pichia pastoris (fragments 2 and 3) or E. coli (fragments 1 and 4). The recombinant proteins were produced at high level and purified using a two-step process involving Ni-NTA affinity chromatography and gel filtration. BALB/c mice were immunized subcutaneously three times at 2-week-intervals with the purified proteins formulated in adjuvant Quil A. The protein fragments were highly immunogenic, inducing high, though variable, ELISA antibody titres, and each was shown to resemble native paramyosin in terms of its recognition by the anti-fragment antibodies in Western blotting. The immunized mice were subjected to cercarial challenge 2 weeks after the final injection and promising protective efficacy in terms of significant reductions in worm burdens, worm-pair numbers and liver eggs in the vaccinated mice resulted. There was no apparent correlation between the antibody titres generated and protective efficacy, as all fragments produced effective but similar levels of protection.
Resumo:
Group A streptococcus (GAS) is responsible for causing many clinical complications including the relatively benign streptococcal pharyngitis and impetigo. However. if left untreated. these conditions may lead to more severe diseases such as rheumatic fever (RF) and rheumatic heart disease (RHD). These diseases exhibit high morbidity and mortality, Particularly in developing countries and in indigenous populations of affluent countries. Only ever occur following GAS infection, a vaccine offers Promise for their Prevention. As stich, we have investigated the Use of the lipid-core peptide (LCP) system for the development of multi-valent Prophylactic GAS vaccines. The current study has investigated the capacity of this system to adjuvant LIP to four different GAS peptide epitopes. Presented are the synthesis and immunological assessment of tetra-valent and tri-valent GAS LCP systems. We demonstrated their capacity to elicit systemic IgG antibody responses in B10.BR mice to all GAS peptide epitopes. The data also showed that the LCP systems Were self-adjuvanting. These findings are particularly encouraging for the development of multi-valent LCP-based GAS vaccines.
Resumo:
We have developed a highly pure, self-adjuvanting, triepitopic Group A Streptococcal vaccine based on the lipid core peptide system, a vaccine delivery system incorporating lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity. Vaccine synthesis was performed using native chemical ligation. Due to the attachment of a highly lipophilic adjuvant, addition of 1% (w/v) sodium dodecyl sulfate was necessary to enhance peptide solubility in order to enable ligation. The vaccine was synthesized in three steps to yield a highly pure product (97.7% purity) with an excellent overall yield. Subcutaneous immunization of B10. BR (H-2(k)) mice with the synthesized vaccine, with or without the addition of complete Freund's adjuvant, elicited high serum IgG antibody titers against each of the incorporated peptide epitopes.
Resumo:
Vaccination remains a vital strategy in the prevention of infectious disease. Commercial vaccine formulations contain a range of additives or manufacturing residuals, which may contribute to patient concerns about vaccine safety. Primary health care professionals are well placed to address patient concerns about vaccine safety. We describe the key constituents present in vaccines, discuss issues related to safety and acceptability of these constituents, and provide a table highlighting constituents of commercially available vaccines in Australia.