649 resultados para Plasminogen activators
Resumo:
Cytokine-inducible protein SSI-1 [signal transducers and activators of transcription (STAT)-induced STAT inhibitor 1, also referred to as SOCS-1 (suppressor of cytokine signaling 1) or JAB (Janus kinase-binding protein)] negatively regulates cytokine receptor signaling by inhibition of JAK kinases. The SSI family of proteins includes eight members that are structurally characterized by an SH2 domain and a C-terminal conserved region that we have called the SC-motif. In this study, we investigated the roles of these domains in the function of SSI-1. Results of reporter assays demonstrated that the pre-SH2 domain (24 aa in front of the SH2 domain) and the SH2 domain of SSI-1 were required for the suppression by SSI-1 of interleukin 6 signaling. Coexpression studies of COS7 cells revealed that these domains also were required for inhibition of three JAKs (JAK1, JAK2, and TYK2). Furthermore, deletion of the SH2 domain, but not the pre-SH2 domain, resulted in loss of association of SSI-1 with TYK2. Thus, SSI-1 associates with JAK family kinase via its SH2 domain, and the pre-SH2 domain is required for the function of SSI-1. Deletion of the SC-motif markedly reduced expression of SSI-1 protein in M1 cells, and this reduction was reversed by treatment with proteasome inhibitors, suggesting that this motif is required to protect the SSI-1 molecule from proteolytic degradation. Based on these findings, we concluded that three distinct domains of SSI-1 (the pre-SH2 domain, the SH2 domain, and the SC-motif) cooperate in the suppression of interleukin 6 signaling.
Resumo:
We demonstrate that in contrast to previous findings by using simple synthetic promoters or activators, the natural IFN-β enhanceosome activates transcription by causing a dramatic increase of the rate by which preinitiation complexes assemble at the promoter. This effect totally depends on the recruitment of the CBP-PolII holoenzyme by the enhanceosome, because its depletion from the extract decelerates the rate of transcription. However, addition of the CBP-PolII holoenzyme back to these extracts fully restores the speed by which the enhanceosome activates transcription. Strikingly, preincubation of the enhanceosome with the CBP-RNA PolII holoenzyme complex results in instant assembly of preinitiation complexes. In contrast, individual IFN-β gene activators function solely by increasing the number of functional preinitiation complexes and not the rate of their assembly. Thus, fast recruitment of the CBP-RNA PolII holoenzyme complex is critical for the rapid activation of IFN-β gene expression by virus infection.
Resumo:
NtrC (nitrogen regulatory protein C) is a bacterial enhancer-binding protein of 469 residues that activates transcription by σ54-holoenzyme. A region of its transcriptional activation (central) domain that is highly conserved among homologous activators of σ54-holoenzyme—residues 206–220—is essential for interaction with this RNA polymerase: it is required for contact with the polymerase and/or for coupling the energy from ATP hydrolysis to a change in the conformation of the polymerase that allows it to form transcriptionally productive open complexes. Several mutant NtrC proteins with amino acid substitutions in this region, including NtrCA216V and NtrCG219K, have normal ATPase activity but fail in transcriptional activation. We now report that other mutant forms carrying amino acid substitutions at these same positions, NtrCA216C and NtrCG219C, are capable of activating transcription when they are not bound to a DNA template (non-DNA-binding derivatives with an altered helix–turn–helix DNA-binding motif at the C terminus of the protein) but are unable to do so when they are bound to a DNA template, whether or not it carries a specific enhancer. Enhancer DNA remains a positive allosteric effector of ATP hydrolysis, as it is for wild-type NtrC but, surprisingly, appears to have become a negative allosteric effector for some aspect of interaction with σ54-holoenzyme. The conserved region in which these amino acid substitutions occur (206–220) is equivalent to the Switch I region of a large group of purine nucleotide-binding proteins. Interesting analogies can be drawn between the Switch I region of NtrC and that of p21ras.
Resumo:
The action of calmodulin (CaM) on target proteins is important for a variety of cellular functions. We demonstrate here, however, that the presence of a CaM-binding site on a protein does not necessarily imply a functional effect. The α-subunit of the cGMP-gated cation channel of human retinal cones has a CaM-binding site on its cytoplasmic N-terminal region, but the homomeric channel that it forms is not functionally modulated by CaM. Mutational analysis based on comparison to the highly homologous olfactory cyclic nucleotide-gated channel α-subunit, which does form a CaM-modulated channel, indicates that residues downstream of the CaM-binding domain on these channels are also important for CaM to have an effect. These findings suggest that a CaM-binding site and complementary structural features in a protein probably evolve independently, and an effect caused by CaM occurs only in the presence of both elements. More generally, the same may be true for other recognized binding sites on proteins for modulators or activators, so that a demonstrated physical interaction does not necessarily imply functional consequence.
Resumo:
SOCS-1, a member of the suppressor of cytokine signaling (SOCS) family, was identified in a genetic screen for inhibitors of interleukin 6 signal transduction. SOCS-1 transcription is induced by cytokines, and the protein binds and inhibits Janus kinases and reduces cytokine-stimulated tyrosine phosphorylation of signal transducers and activators of transcription 3 and the gp130 component of the interleukin 6 receptor. Thus, SOCS-1 forms part of a feedback loop that modulates signal transduction from cytokine receptors. To examine the role of SOCS-1 in vivo, we have used gene targeting to generate mice lacking this protein. SOCS-1−/− mice exhibited stunted growth and died before weaning with fatty degeneration of the liver and monocytic infiltration of several organs. In addition, the thymus of SOCS-1−/− mice was reduced markedly in size, and there was a progressive loss of maturing B lymphocytes in the bone marrow, spleen, and peripheral blood. Thus, SOCS-1 is required for in vivo regulation of multiple cell types and is indispensable for normal postnatal growth and survival.
Resumo:
Mammalian Cdk5 is a member of the cyclin-dependent kinase family that is activated by a neuron-specific regulator, p35, to regulate neuronal migration and neurite outgrowth. p35/Cdk5 kinase colocalizes with and regulates the activity of the Pak1 kinase in neuronal growth cones and likely impacts on actin cytoskeletal dynamics through Pak1. Here, we describe a functional homologue of Cdk5 in budding yeast, Pho85. Like Cdk5, Pho85 has been implicated in actin cytoskeleton regulation through phosphorylation of an actin-regulatory protein. Overexpression of CDK5 in yeast cells complemented most phenotypes associated with pho85Δ, including defects in the repression of acid phosphatase expression, sensitivity to salt, and a G1 progression defect. Consistent with the functional complementation, Cdk5 associated with and was activated by the Pho85 cyclins Pho80 and Pcl2 in yeast cells. In a reciprocal series of experiments, we found that Pho85 associated with the Cdk5 activators p35 and p25 to form an active kinase complex in mammalian and insect cells, supporting our hypothesis that Pho85 and Cdk5 are functionally related. Our results suggest the existence of a functionally conserved pathway involving Cdks and actin-regulatory proteins that promotes reorganization of the actin cytoskeleton in response to regulatory signals.
Resumo:
To create a universal system for the control of gene expression, we have studied methods for the construction of novel polydactyl zinc finger proteins that recognize extended DNA sequences. Elsewhere we have described the generation of zinc finger domains recognizing sequences of the 5′-GNN-3′ subset of a 64-member zinc finger alphabet. Here we report on the use of these domains as modular building blocks for the construction of polydactyl proteins specifically recognizing 9- or 18-bp sequences. A rapid PCR assembly method was developed that, together with this predefined set of zinc finger domains, provides ready access to 17 million novel proteins that bind the 5′-(GNN)6-3′ family of 18-bp DNA sites. To examine the efficacy of this strategy in gene control, the human erbB-2 gene was chosen as a model. A polydactyl protein specifically recognizing an 18-bp sequence in the 5′-untranslated region of this gene was converted into a transcriptional repressor by fusion with Krüppel-associated box (KRAB), ERD, or SID repressor domains. Transcriptional activators were generated by fusion with the herpes simplex VP16 activation domain or with a tetrameric repeat of VP16’s minimal activation domain, termed VP64. We demonstrate that both gene repression and activation can be achieved by targeting designed proteins to a single site within the transcribed region of a gene. We anticipate that gene-specific transcriptional regulators of the type described here will find diverse applications in gene therapy, functional genomics, and the generation of transgenic organisms.
Resumo:
c-Cbl-associated protein (CAP) is a signaling protein that interacts with both c-Cbl and the insulin receptor that may be involved in the specific insulin-stimulated tyrosine phosphorylation of c-Cbl. The restricted expression of CAP in cells metabolically sensitive to insulin suggests an important potential role in insulin action. The expression of CAP mRNA and proteins are increased in 3T3-L1 adipocytes by the insulin sensitizing thiazolidinedione drugs, which are activators of the peroxisome proliferator-activated receptor γ (PPARγ). The stimulation of CAP expression by PPARγ activators results from increased transcription. This increased expression of CAP was accompanied by a potentiation of insulin-stimulated c-Cbl tyrosine phosphorylation. Administration of the thiazolidinedione troglitazone to Zucker (fa/fa) rats markedly increased the expression of the major CAP isoform in adipose tissue. This effect was sustained for up to 12 weeks of treatment and accompanied the ability of troglitazone to prevent the onset of diabetes and its complications. Thus, CAP is the first PPARγ-sensitive gene identified that participates in insulin signaling and may play a role in thiazolidinedione-induced insulin sensitization.
Resumo:
Mutagenesis of the host immune system has helped identify response pathways necessary to combat tuberculosis. Several such pathways may function as activators of a common protective gene: inducible nitric oxide synthase (NOS2). Here we provide direct evidence for this gene controlling primary Mycobacterium tuberculosis infection using mice homozygous for a disrupted NOS2 allele. NOS2−/− mice proved highly susceptible, resembling wild-type littermates immunosuppressed by high-dose glucocorticoids, and allowed Mycobacterium tuberculosis to replicate faster in the lungs than reported for other gene-deficient hosts. Susceptibility appeared to be independent of the only known naturally inherited antimicrobial locus, NRAMP1. Progression of chronic tuberculosis in wild-type mice was accelerated by specifically inhibiting NOS2 via administration of N6-(1-iminoethyl)-l-lysine. Together these findings identify NOS2 as a critical host gene for tuberculostasis.
Resumo:
Understanding the ways in which phosphorus metabolism is regulated in photosynthetic eukaryotes is critical for optimizing crop productivity and managing aquatic ecosystems in which phosphorus can be a major source of pollution. Here we describe a gene encoding a regulator of phosphorus metabolism, designated Psr1 (phosphorus starvation response), from a photosynthetic eukaryote. The Psr1 protein is critical for acclimation of the unicellular green alga Chlamydomonas reinhardtii to phosphorus starvation. The N-terminal half of Psr1 contains a region similar to myb DNA-binding domains and the C-terminal half possesses glutamine-rich sequences characteristic of transcriptional activators. The level of Psr1 increases at least 10-fold upon phosphate starvation, and immunocytochemical studies demonstrate that this protein is nuclear-localized under both nutrient-replete and phosphorus-starvation conditions. Finally, Psr1 and angiosperm proteins have domains that are similar, suggesting a possible role for Psr1 homologs in the control of phosphorus metabolism in vascular plants. With the identification of regulators such as Psr1 it may become possible to engineer photosynthetic organisms for more efficient utilization of phosphorus and to establish better practices for the management of agricultural lands and natural ecosystems.
Resumo:
Enhancers are defined by their ability to stimulate gene activity from remote sites and their requirement for promoter-proximal upstream activators to activate transcription. Here we demonstrate that recruitment of the p300/CBP-associated factor PCAF to a reporter gene is sufficient to stimulate promoter activity. The PCAF-mediated stimulation of transcription from either a distant or promoter-proximal position depends on the presence of an upstream activator (Sp1). These data suggest that acetyltransferase activity may be a primary component of enhancer function, and that recruitment of polymerase and enhancement of transcription are separable. Transcriptional activation by PCAF requires both its acetyltransferase activity and an additional activity within its N terminus. We also show that the simian virus 40 enhancer and PCAF itself are sufficient to counteract Mad-mediated repression. These results are compatible with recent models in which gene activity is regulated by the competition between deacetylase-mediated repression and enhancer-mediated recruitment of acetyltransferases.
Resumo:
Threshold mechanisms of transcriptional activation are thought to be critical for translating continuous gradients of extracellular signals into discrete all-or-none cellular responses, such as mitogenesis and differentiation. Indeed, unequivocal evidence for a graded transcriptional response in which the concentration of inducer directly correlates with the level of gene expression in individual eukaryotic cells is lacking. By using a novel binary tetracycline regulatable retroviral vector system, we observed a graded rather than a threshold mechanism of transcriptional activation in two different model systems. When polyclonal populations of cells were analyzed at the single cell level, a dose-dependent, stepwise increase in expression of the reporter gene, green fluorescent protein (GFP), was observed by fluorescence-activated cell sorting. These data provide evidence that, in addition to the generally observed all-or-none switch, the basal transcription machinery also can respond proportionally to changes in concentration of extracellular inducers and trancriptional activators.
Resumo:
In mammals, one of the major actions of insulin-like growth factor I (IGF-I) is to increase skeletal growth by stimulating new cartilage formation. IGF-I stimulates chondrocytes in vitro to synthesize new cartilage matrix, measured by enhanced uptake of 35S-sulfate, but the addition of insulin does not produce a similar effect except when added at high concentrations. However, recent studies have shown that, in teleosts, both insulin and IGF-I are potent activators of 35S-sulfate uptake in gill cartilage. To further characterize the growth-promoting activities of these hormones in fish, we have used reverse transcriptase-linked PCR to analyze the expression of insulin receptor family genes in salmon gill cartilage. Partial cDNA sequences encoding the tyrosine kinase domains from six distinct members of the IR gene family were obtained, and sequence comparisons revealed that four of the cDNAs encoded amino acid sequences that were highly homologous to human IR whereas the encoded sequences from two of the cDNAs were more similar to the human type I IGF receptor (IGF-R). Furthermore, a comparative reverse transcriptase-linked PCR assay revealed that the four putative IR mRNAs expressed in toto in gill cartilage were 56% of that found in liver whereas the expressed amount of the two IGF-R mRNAs was 9-fold higher compared with liver. These results suggest that the chondrogenic actions of insulin and IGF-I in fish are mediated by the ligands binding to their cognate receptors. However, further studies will be required to characterize the binding properties and relative contribution of the individual IR and IGF-R genes.
Resumo:
Alveolar rhabdomyosarcoma (ARMS) cells often harbor one of two unique chromosomal translocations, either t(2;13)(q35;q14) or t(1;13)(p36;q14). The chimeric proteins expressed from these rearrangements, PAX3-FKHR and PAX7-FKHR, respectively, are potent transcriptional activators. In an effort to exploit these unique cancer-specific molecules to achieve ARMS-specific expression of therapeutic genes, we have studied the expression of a minimal promoter linked to six copies of a PAX3 DNA binding site, prs-9. In transient transfections, expression of the prs-9-regulated reporter genes was ≈250-fold higher than expression of genes lacking the prs-9 sequences in cell lines derived from ARMS, but remained at or below baseline levels in other cells. High expression of these prs-9-regulated genes was also observed in a cancer cell line that lacks t(2;13) but was stably transfected with a plasmid expressing PAX3-FKHR. Transfection of a plasmid containing the diphtheria toxin A chain gene regulated by prs-9 sequences (pA3–6PED) was selectively cytotoxic for PAX3-FKHR-expressing cells. This was shown by inhibition of gene expression from cotransfected plasmids and by direct cytotoxicity after transfected cells were isolated by cell sorting. Gene transfer of pA3–6PED may thus be useful as a cancer-specific treatment strategy for t(2;13)- or t(1;13)-positive ARMS. Furthermore, gene transfer of fusion protein-regulated toxin genes might also be applied to the treatment of other cancers that harbor cancer-specific chromosomal translocations involving transcription factors.
Resumo:
Budding yeast adjusts to increases in external osmolarity via a specific mitogen-activated protein kinase signal pathway, the high-osmolarity glycerol response (HOG) pathway. Studies with a functional Hog1–green fluorescent protein (GFP) fusion reveal that even under nonstress conditions the mitogen-activated protein kinase Hog1 cycles between cytoplasmic and nuclear compartments. The basal distribution of the protein seems independent of its activator, Pbs2, and independent of its phosphorylation status. Upon osmotic challenge, the Hog1–GFP fusion becomes rapidly concentrated in the nucleus from which it is reexported after return to an iso-osmotic environment or after adaptation to high osmolarity. The preconditions and kinetics of increased nuclear localization correlate with those found for the dual phosphorylation of Hog1–GFP. The duration of Hog1 nuclear residence is modulated by the presence of the general stress activators Msn2 and Msn4. Reexport of Hog1 to the cytoplasm does not require de novo protein synthesis but depends on Hog1 kinase activity. Thus, at least three different mechanisms contribute to the intracellular distribution pattern of Hog1: phosphorylation-dependent nuclear accumulation, retention by nuclear targets, and a kinase-induced export.