925 resultados para Plants and civilization
Resumo:
An experiment was conducted to study the effects of liming and drying method on Ca nutrition, fungus infection and aflatoxin production potential on peanut (Arachis hypogea) grains. Peanut cv. Botutatu was grown in the absence or presence of liming to raise the base saturation of the soil from 20 to 56%. Calcium contents of the soil were increased from 5.5 to 14.6 mmol((c))kg-1 and pH from 4.2 to 4.9. After harvest, plants and pods were dried in (1) shade, (2) field down to 100 g water kg-1 (3) field down to 250 g water kg-1 and transferred to a forced-air oven at 30°C, (4) field down to 360 g water kg-1 and transferred to a forced-air oven at 30°C. Calcium contents were analyzed in the grains, pericarps and seed coats. The incidence of Aspergillus spp., Penicillium spp., Rhizopus spp. and potential aflatoxin production in vitro were evaluated, as well as the seed coat thickness. The seed coat was thicker when peanut was grown in the presence of lime, leading to a decrease in seed infection by Aspergillus spp. and Penicillium spp. When plants were dried in shade, the growth of aflatoxinogenic fungi was independent of liming. However, in plants dried in the field or field + oven, the development of these fungi was decreased and even suppressed when the Ca content of the seed coat was increased from 2.2 to 5.5 g kg-1.
Resumo:
The effects of jackbean leaf residues incorporated in the soil on germination and seedlings growth of cucumber, radish and some weeds was examined. Trials were carried out under greenhouse conditions to (a) determine the amount of incorporated residue that is inhibitory to two test plants, (b) to determine if decomposition time changes the inhibitory levels of jackbean residues on test plants and (c) to determine the amount of residue that is inhibitory to the weed species. Jackbean leaf residues incorporated in soil at concentration of 2% or higher and allowed to decompose for a period of 0 to 2 weeks before sowing, reduced the initial growth of cucumber and radish and at different concentrations, reduced germination and growth of three weed species. These results suggest the presence of allelopathic components in Jackbean leaves that could affect seed germination and seedling development.
Resumo:
Carotenoids are natural pigments which are synthesized by plants and are responsible for the bright colors of various fruits and vegetables. There are several dozen carotenoids in the foods that we eat, and most of these carotenoids have antioxidant activity. β-carotene has been best studied since, in most countries it is the most common carotenoid in fruits and vegetables. However, in the U.S., lycopene from tomatoes now is consumed in approximately the same amount as β-carotene. Antioxidants (including carotenoids) have been studied for their ability to prevent chronic disease. β-carotene and others carotenoids have antioxidant properties in vitro and in animal models. Mixtures of carotenoids or associations with others antioxidants (e.g. vitamin E) can increase their activity against free radicals. The use of animals models for studying carotenoids is limited since most of the animals do not absorb or metabolize carotenoids similarly to humans. Epidemiologic studies have shown an inverse relationship between presence of various cancers and dietary carotenoids or blood carotenoid levels. However, three out of four intervention trials using high dose β- carotene supplements did not show protective effects against cancer or cardiovascular disease. Rather, the high risk population (smokers and asbestos workers) in these intervention trials showed an increase in cancer and angina cases. It appears that carotenoids (including β-carotene) can promote health when taken at dietary levels, but may have adverse effects when taken in high dose by subjects who smoke or who have been exposed to asbestos. It will be the task of ongoing and future studies to define the populations that can benefit from carotenoids and to define the proper doses, lengths of treatment, and whether mixtures, rather than single carotenoids (e.g. β-carotene) are more advantageous.
Resumo:
The use of biosolids in horticulture could contribute to recycle residues produced by men. This study analyzed concentrations of Cu, Mn and Zn in the compost during fermentation, in the soil amended with the composts and in the tomato plant materials. Five composts were produced using sugar-cane bagasse, biosolid and cattle manure in the proportions: 75-0-25; 75-12.5-12.5; 75-25-0; 50-50- 0 and 0-100-0 (composts with 0; 12.5; 25; 50 and 100% biosolid), respectively. These composts were used in an experiment with 6 treatments (the 5 composts and a control with mineral fertilization) in a design of randomized blocks with a split plot design. The control and the treatment of 0% biosolid received inorganic nitrogen. All the treatments received the same amount of N, P and K. Two tomato plants were cultivated in each 24 L pot, in a greenhouse at the Technology Department of the Faculdade de Ciências Agrárias e Veterinárias of the Universidade Estadual Paulista in Jaboticabal County, São Paulo State, Brazil. The concentrations of Cu, Mn and Zn were evaluated in the compost 7, 27, 57, 97 and 127 days after composting began, in the soil 0 and 164 days after the compost applied, and in the plants. Compost, soil and plant samples were subjected to digestion with HNO3, H 2O2 and HCl and the metals were determined by AAS. There were positive and significant correlations between Mn in the compost and Mn uptake by the plant (0.46 p>0.05), and between Zn in the compost and Zn concentration in the plant (0.78 p>0.05). Cu, Mn and Zn concentrations increased during composting. The biosolid in the compost supplied Cu and Zn to tomato plants, and the cattle manure supplied Mn to the plants.
Resumo:
The experiment was conducted at UNESP, Jaboticabal-SP, during the period of September to November of 2000, with the objective of evaluating the productivity of the cultivation of lettuce and radishes as a function of spacing between plants and of the time of establishment of intercropping. The experimental design was a completely randomized blocks and four replications. The 14 treatments consisted of combinations of spacing between lines (0.30 and 0.40 m), cultivation systems (intercropping and monoculture), and time of sowing of radish seeds to establish intercropping (0, 7 and 14 days after transplant of lettuce). The cultivars of lettuce and radish were, 'Tainá' and 'Crimson Gigante', respectively. A greater yield of commercial radish roots was obtained with intercropping cultivation. The fresh mass of lettuce in monoculture did not differ from that produced with intercropping. These results suggest that intercropping cultivation between these species is advantageous.
Resumo:
Cell culture of Maytenus ilicifolia were established in order to produce and to quantify the antitumoral and antioxidant quinonemethide triterpenes. In vitro calli were induced from leaf explants of native plants and cultured in semi-solid medium under controlled conditions of humidity, temperature and photoperiod. The quinonemethide triterpenes showed maximum accumulation in the logarithmic phase growth of the cell culture. A rapid, sensitive and reliable reverse-phase HPLC method was used for quantitative determination of the antitumoral and antioxidant quinonemethide triterpenes, 22β-hydroxymaytenin and maytenin in callus of Maytenus ilicifolia. Well resolved peaks with good detection response and linearity in the range 1.0 - 100 μg/mL were obtained. This quantitative work was performed by an external standard method.
Resumo:
The morphology and phenology of Sirodotia huillensis was evaluated seasonally in a central Mexican first-order calcareous stream. Water temperature was constant (24-25°C) and pH circumneutral to alkaline (6.7-7.9), and calcium and sulfates were the dominant ions. The gametophyte stages were characterized by the presence of a distinctive mucilaginous layer, a marked difference in phycocyanin to phycoerythrin ratio between female and male plants, and the presence of a carpogonia with a large trichogyne (>60 μm). Occasionally three capogonia were observed on a single basal cell. The 'Chantransia' stages were morphologically similar to those described for the other members of Batrachospermales. A remarkable observation was the formation of dome-shaped structures, consisting of prostrate filaments that are related with the development of new gametophytes. Chromosome numbers were n = 4 for fascicle cells, cortical filament cells and dome-shaped cells, and 2n = 8 for gonimoblast filament cells and 'Chantransia' stage filaments. Gametophytes and 'Chantransia' stages occurred in fast current velocities (60-170 cm/s) and shaded (33.1-121 μmol photons/m2/s) stream segments. The population fluctuated throughout the study period in terms of percentage cover and frequency: the 'Chantransia' stages were most abundant in the rainy season, whereas gametophytic plants had the highest frequency values during the dry season. These results were most likely a result of fluctuations in rainfall and related changes in current velocity. Some characteristics of this population can be viewed as probable adaptations to high current velocities: the mucilaginous layer around plants that reduces drag; potential increase in fertilization by the elongate and plentiful trichogynes and abundant dome-shaped structures producing several gametophytes.
Resumo:
In this paper a comparative analysis of the environmental impact caused by the use of natural gas and diesel in thermoelectric power plants utilizing combined cycle is performed. The objective is to apply a thermoeconomical analysis in order to compare the two proposed fuels. In this analysis, a new methodology that incorporates the economical engineering concept to the ecological efficiency once Cardu and Baica [1, 2], which evaluates, in general terms, the environmental impacts caused by CO2, SO2, NOx and Particulate Matter (PM), adopting as reference the air quality standards in vigour is employed. The thermoeconomic model herein proposed utilizes functional diagrams that allow the minimization the Exergetic Manufacturing Cost, which represents the cost of production of electricity incorporating the environmental impact effects to study the performance of the thermoelectric power plant [3,4], It follows that it is possible to determine the environmental impact caused by thermoelectric power plants and, under the ecological standpoint, the use of natural gas as a fuel is the best option compared to the use of the diesel, presenting ecological efficiency values of 0.944 and 0.914 respectively. From the Exergoeconomic point of view of, it was found out that the EMC (Exergetic Manufacturing Cost) is better when natural gas is used as fuel compared to the diesel fuel. Copyright © 2006 by ASME.
Resumo:
The aim of the study was to evaluate production and determine the level of total soluble solids for cherry tomatoes, under protected cultivation carried out with different types of spacing and pruning. The experiment was performed according to a randomized block design in a 2×2 factorial scheme, with two types of spacing between plants and two types of pruning, and with five repetitions. The cultivar 'Sindy' (De Ruiter) was utilized. Each experimental parcel contained seven plants, and fruits were collected from the five central plants. The seedlings were produced in Styrofoam trays of 128 cells and transplanted at 33 days after planting using two types of spacing between plants (0.3 and 0.5 m) and 1 m spacing between rows. The plants were grown as single-or double-stem form and staked individually. The parameters evaluated were the number of fruit per plant, fresh weight of fruit and the level of total soluble solids expressed in °Brix. There was no evidence of significant interaction between the treatments. For fresh weight of fruit per plant, there was a significant effect when the plants were grown with a spacing of 1 × 0.5 m, with 4.12 kg per plant, compared to a production of 3.00 kg per plant with a spacing of 1 × 0.3 m. With regard to the number of fruit per plant, a significant difference was seen between the two types of spacing, where a spacing of 1 × 0.3 m yielded a lower number of fruit per plant (188.8), compared to that observed with a spacing of 1 × 0.5 m (238.1). With regard to the two types of pruning, there was a significant effect for only the number of fruit per plant, where the mean number of fruit was 188.4 with one stem and 238.4 with two stems. No significant difference was observed between the treatments for the level of total soluble solids. It is concluded that for the cultivar 'Sindy', under protected cultivation, production is better with a spacing of 0.5 m between plants and the use of two stems per plant.
Resumo:
Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha-1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The cultivation of fruit plants from temperate climate in tropical or subtropical regions can be a good income alternative for the producer. However, due to the little existent information about cultivation of those fruit plants, the producers use imported techniques of other producing areas, or even an association of practices used for other fruit plants, pointing out the leaf spray fertilization of micronutrients without appropriate scientific base. In this context, the objective of this study was to verify the effect of the leaf spray fertilization of B and Zn on productivity and fruit quality of Japanese pear tree. The experiment was conducted from 2004 to 2005, in Ilha Solteira, in northwestern São Paulo State-Brazil. The climate is, according to the Köpppen Classification, tropical wet and dry (Aw). The 'Okusankichi' cultivar, grafted on Pyrus communis L. rootstock was used as well as doses of 110 g.ha-1 of B and 250 g.ha-1 of Zn in each application. The treatments were: T1. water, T2. boric acid, T3. zinc sulfate, T4. T2 + T3, T5. boric acid + urea + citric acid + EDTA, T6. zinc sulfate + urea + citric acid + EDTA, T7. T5 + T6, T8. boric acid + urea + citric acid + EDTA + sodium molibdate + sulfur + calcium chloride, T9. zinc sulfate + urea + citric acid + EDTA + Fe sulfate + Mn sulfate + Mg sulfate and, T10. T8+T9. A randomized blocks design was used and the averages were compared by Tukey test. In the first crop the mixture of boric acid with quelating agents were efficient to supply B to the plants and zinc sulfate plus quelating agents were efficient to increase Zn leaf content. However, the productivity and the fruit quality were not influenced by the leaf spray of B and Zn. In the second crop the leaf content of B and Zn and the productivity were not influenced by the leaf spray; the boric acid and the zinc sulfate with or without quelating agents increased the contents of total soluble solids and, the boric acid with or without quelating agents increased the contents of total titratable acidity.
Resumo:
The leaf-cut ants are important agricultural pest, because they can cause intense defoliation in plants and destroy large areas cultivated. Although there are several works for the control of these insects by examining the toxicity of natural chemical compounds on various species of ants, few are focused on analyses of morphological changes caused in the affected organs. The aim of this study was to evaluate the effects of hydramethylnon on Atta sexdens rubropilosa workers through toxicological bioassays and morphological analysis of the post-pharyngeal glands, midgut, and Malpighian tubules of these ants. Hydramethylnon dissolved either in acetone (HA) or in a mixture of acetone and soy oil (HAO) was added to the artificial diet at a concentration of 200 μg/mL. The workers fed daily with the diet containing hydramethylnon showed higher mortality than the controls, especially when HAO was used. Moreover, light and electron microscopy revealed morphological alterations in the midgut and Malpighian tubules of workers treated with HA, whereas alterations of the post-pharyngeal glands were observed in the HAO-treated group. These results indicated that the presence of soy oil provided an alternate route for the ingestion of the formicide's active ingredient and corroborated previous studies that suggested a role for the post-pharyngeal glands in lipid metabolism. Our findings suggest that the oil may carry hydramethylnon to the gland lumen, resulting in lower quantity of the active ingredient in the intestinal lumen and Malpighian tubules that explains the lower degree of morphological alterations in these structures in the workers treated with HAO. These results may provide insight into the toxicological effects of hydramethylnon on leaf-cutting ants and the use of vegetable oil as an adjuvant in baits to control ants. © 2012 Elsevier Ltd.
Resumo:
Isoflavones are phenolic compounds widely distributed in plants and found in a high percentage in soybeans. They have important biological properties and are regarded as potential chemopreventive agents. The aim of this study was to verify the preventive effect of two soy isoflavones (genistein and daidzein) by a micronucleus assay, analysis of GST activity, and real-time RT-PCR analysis of GSTa2 gene expression. Mutagens of direct (doxorubicin) and indirect (2-aminoanthracene) DNA damage were used. Hepatoma cells (HTC) were treated with genistein or daidzein for 26 h at noncytotoxic concentrations; 10 μM when alone, and 0.1, 1.0 and 10 μM when combined with genotoxic agents. The micronucleus test demonstrated that both isoflavones alone had no genotoxic effect. Genistein showed antimutagenic effects at 10 μM with both direct and indirect DNA damage agents. On phase II enzyme regulation, the current study indicated an increase in total cytoplasmic GST activity in response to genistein and daidzein at 10 μM supplementation. However, the mRNA levels of GSTa2 isozymes were not differentially modulated by genistein or daidzein. The results point to an in vitro antimutagenic activity of genistein against direct and indirect DNA damage-induced mutagenicity. © 2012 Springer Science+Business Media B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Communication contributes to mediate the interactions between plants and the animals that disperse their genes. As yet, seasonal patterns in plant-animal communication are unknown, even though many habitats display pronounced seasonality e.g. when leaves senescence. We thus hypothesized that the contrast between fruit displays and their background vary throughout the year in a seasonal habitat. If this variation is adaptive, we predicted higher contrasts between fruits and foliage during the fruiting season in a cerrado-savanna vegetation, southeastern Brazil. Based on a six-year data base of fruit ripening and a one-year data set of fruit biomass, we used reflectance measurements and contrast analysis to show that fruits with distinct colors differed in the beginning of ripening and the peak of fruit biomass. Black, and particularly red fruits, that have a high contrast against the leaf background, were highly seasonal, peaking in the wet season. Multicolored and yellow fruits were less seasonal, not limited to one season, with a bimodal pattern for yellow ones, represented by two peaks, one in each season. We further supported the hypothesis that seasonal changes in fruit contrasts can be adaptive because fruits contrasted more strongly against their own foliage in the wet season, when most fruits are ripe. Hence, the seasonal variation in fruit colors observed in the cerrado-savanna may be, at least partly, explicable as an adaptation to ensure high conspicuousness to seed dispersers. © 2013 The Authors.