502 resultados para Pixels


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in mobile phone cameras have poised them to take over compact hand-held cameras as the consumer’s preferred camera option. Along with advances in the number of pixels, motion blur removal, face-tracking, and noise reduction algorithms have significant roles in the internal processing of the devices. An undesired effect of severe noise reduction is the loss of texture (i.e. low-contrast fine details) of the original scene. Current established methods for resolution measurement fail to accurately portray the texture loss incurred in a camera system. The development of an accurate objective method to identify the texture preservation or texture reproduction capability of a camera device is important in this regard. The ‘Dead Leaves’ target has been used extensively as a method to measure the modulation transfer function (MTF) of cameras that employ highly non-linear noise-reduction methods. This stochastic model consists of a series of overlapping circles with radii r distributed as r−3, and having uniformly distributed gray level, which gives an accurate model of occlusion in a natural setting and hence mimics a natural scene. This target can be used to model the texture transfer through a camera system when a natural scene is captured. In the first part of our study we identify various factors that affect the MTF measured using the ‘Dead Leaves’ chart. These include variations in illumination, distance, exposure time and ISO sensitivity among others. We discuss the main differences of this method with the existing resolution measurement techniques and identify the advantages. In the second part of this study, we propose an improvement to the current texture MTF measurement algorithm. High frequency residual noise in the processed image contains the same frequency content as fine texture detail, and is sometimes reported as such, thereby leading to inaccurate results. A wavelet thresholding based denoising technique is utilized for modeling the noise present in the final captured image. This updated noise model is then used for calculating an accurate texture MTF. We present comparative results for both algorithms under various image capture conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los protocolos de medición antropométrica se caracterizan por la profusión de medidas discretas o localizadas, en un intento para caracterizar completamente la forma corporal del sujeto -- Dichos protocolos se utilizan intensivamente en campos como medicina deportiva, forense y/o reconstructiva, diseño de prótesis, ergonomía, en la confección de prendas, accesorios, etc -- Con el avance de algoritmos de recuperación de formas a partir de muestreos (digitalizaciones) la caracterización antropométrica se ha alterado significativamente -- El articulo presente muestra el proceso de caracterización digital de forma corpórea, incluyendo los protocolos de medición sobre el sujeto, el ambiente computacional - DigitLAB- (desarrollado en el CII-CAD-CAM-CG de la Universidad EAFIT) para recuperación de superficies, hasta los modelos geométricos finales -- Se presentan comparaciones de los resultados obtenidos con DigitLAB y con paquetes comerciales de recuperación de forma 3D -- Los resultados de DigitLAB resultan superiores, debido principalmente al hecho de que este toma ventaja de los patrones de las digitalizaciones (planares de contacto, por rejilla de pixels - range images -, etc.) y provee módulos de tratamiento geométrico - estadístico de los datos para poder aplicar efectivamente los algoritmos de recuperación de forma -- Se presenta un caso de estudio dirigido a la industria de la confección, y otros efectuados sobre conjuntos de prueba comunes en el ámbito científico para la homologación de algoritmos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Les performances de détecteurs à scintillation, composés d’un cristal scintillateur couplé à un photodétecteur, dépendent de façon critique de l’efficacité de la collecte et de l’extraction des photons de scintillation du cristal vers le capteur. Dans les systèmes d’imagerie hautement pixellisés (e.g. TEP, TDM), les scintillateurs doivent être arrangés en matrices compactes avec des facteurs de forme défavorables pour le transport des photons, au détriment des performances du détecteur. Le but du projet est d’optimiser les performances de ces détecteurs pixels par l'identification des sources de pertes de lumière liées aux caractéristiques spectrales, spatiales et angulaires des photons de scintillation incidents sur les faces des scintillateurs. De telles informations acquises par simulation Monte Carlo permettent une pondération adéquate pour l'évaluation de gains atteignables par des méthodes de structuration du scintillateur visant à une extraction de lumière améliorée vers le photodétecteur. Un plan factoriel a permis d'évaluer la magnitude de paramètres affectant la collecte de lumière, notamment l'absorption des matériaux adhésifs assurant l'intégrité matricielle des cristaux ainsi que la performance optique de réflecteurs, tous deux ayant un impact considérable sur le rendement lumineux. D'ailleurs, un réflecteur abondamment utilisé en raison de ses performances optiques exceptionnelles a été caractérisé dans des conditions davantage réalistes par rapport à une immersion dans l'air, où sa réflectivité est toujours rapportée. Une importante perte de réflectivité lorsqu'il est inséré au sein de matrices de scintillateurs a été mise en évidence par simulations puis confirmée expérimentalement. Ceci explique donc les hauts taux de diaphonie observés en plus d'ouvrir la voie à des méthodes d'assemblage en matrices limitant ou tirant profit, selon les applications, de cette transparence insoupçonnée.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monitoring agricultural crops constitutes a vital task for the general understanding of land use spatio-temporal dynamics. This paper presents an approach for the enhancement of current crop monitoring capabilities on a regional scale, in order to allow for the analysis of environmental and socio-economic drivers and impacts of agricultural land use. This work discusses the advantages and current limitations of using 250m VI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for this purpose, with emphasis in the difficulty of correctly analyzing pixels whose temporal responses are disturbed due to certain sources of interference such as mixed or heterogeneous land cover. It is shown that the influence of noisy or disturbed pixels can be minimized, and a much more consistent and useful result can be attained, if individual agricultural fields are identified and each field's pixels are analyzed in a collective manner. As such, a method is proposed that makes use of image segmentation techniques based on MODIS temporal information in order to identify portions of the study area that agree with actual agricultural field borders. The pixels of each portion or segment are then analyzed individually in order to estimate the reliability of the temporal signal observed and the consequent relevance of any estimation of land use from that data. The proposed method was applied in the state of Mato Grosso, in mid-western Brazil, where extensive ground truth data was available. Experiments were carried out using several supervised classification algorithms as well as different subsets of land cover classes, in order to test the methodology in a comprehensive way. Results show that the proposed method is capable of consistently improving classification results not only in terms of overall accuracy but also qualitatively by allowing a better understanding of the land use patterns detected. It thus provides a practical and straightforward procedure for enhancing crop-mapping capabilities using temporal series of moderate resolution remote sensing data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Collecting ground truth data is an important step to be accomplished before performing a supervised classification. However, its quality depends on human, financial and time ressources. It is then important to apply a validation process to assess the reliability of the acquired data. In this study, agricultural infomation was collected in the Brazilian Amazonian State of Mato Grosso in order to map crop expansion based on MODIS EVI temporal profiles. The field work was carried out through interviews for the years 2005-2006 and 2006-2007. This work presents a methodology to validate the training data quality and determine the optimal sample to be used according to the classifier employed. The technique is based on the detection of outlier pixels for each class and is carried out by computing Mahalanobis distances for each pixel. The higher the distance, the further the pixel is from the class centre. Preliminary observations through variation coefficent validate the efficiency of the technique to detect outliers. Then, various subsamples are defined by applying different thresholds to exclude outlier pixels from the classification process. The classification results prove the robustness of the Maximum Likelihood and Spectral Angle Mapper classifiers. Indeed, those classifiers were insensitive to outlier exclusion. On the contrary, the decision tree classifier showed better results when deleting 7.5% of pixels in the training data. The technique managed to detect outliers for all classes. In this study, few outliers were present in the training data, so that the classification quality was not deeply affected by the outliers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crop monitoring and more generally land use change detection are of primary importance in order to analyze spatio-temporal dynamics and its impacts on environment. This aspect is especially true in such a region as the State of Mato Grosso (south of the Brazilian Amazon Basin) which hosts an intensive pioneer front. Deforestation in this region as often been explained by soybean expansion in the last three decades. Remote sensing techniques may now represent an efficient and objective manner to quantify how crops expansion really represents a factor of deforestation through crop mapping studies. Due to the special characteristics of the soybean productions' farms in Mato Grosso (area varying between 1000 hectares and 40000 hectares and individual fields often bigger than 100 hectares), the Moderate Resolution Imaging Spectroradiometer (MODIS) data with a near daily temporal resolution and 250 m spatial resolution can be considered as adequate resources to crop mapping. Especially, multitemporal vegetation indices (VI) studies have been currently used to realize this task [1] [2]. In this study, 16-days compositions of EVI (MODQ13 product) data are used. However, although these data are already processed, multitemporal VI profiles still remain noisy due to cloudiness (which is extremely frequent in a tropical region such as south Amazon Basin), sensor problems, errors in atmospheric corrections or BRDF effect. Thus, many works tried to develop algorithms that could smooth the multitemporal VI profiles in order to improve further classification. The goal of this study is to compare and test different smoothing algorithms in order to select the one which satisfies better to the demand which is classifying crop classes. Those classes correspond to 6 different agricultural managements observed in Mato Grosso through an intensive field work which resulted in mapping more than 1000 individual fields. The agricultural managements above mentioned are based on combination of soy, cotton, corn, millet and sorghum crops sowed in single or double crop systems. Due to the difficulty in separating certain classes because of too similar agricultural calendars, the classification will be reduced to 3 classes : Cotton (single crop), Soy and cotton (double crop), soy (single or double crop with corn, millet or sorghum). The classification will use training data obtained in the 2005-2006 harvest and then be tested on the 2006-2007 harvest. In a first step, four smoothing techniques are presented and criticized. Those techniques are Best Index Slope Extraction (BISE) [3], Mean Value Iteration (MVI) [4], Weighted Least Squares (WLS) [5] and Savitzky-Golay Filter (SG) [6] [7]. These techniques are then implemented and visually compared on a few individual pixels so that it allows doing a first selection between the five studied techniques. The WLS and SG techniques are selected according to criteria proposed by [8]. Those criteria are: ability in eliminating frequent noises, conserving the upper values of the VI profiles and keeping the temporality of the profiles. Those selected algorithms are then programmed and applied to the MODIS/TERRA EVI data (16-days composition periods). Tests of separability are realized based on the Jeffries-Matusita distance in order to see if the algorithms managed in improving the potential of differentiation between the classes. Those tests are realized on the overall profile (comprising 23 MODIS images) as well as on each MODIS sub-period of the profile [1]. This last test is a double interest process because it allows comparing the smoothing techniques and also enables to select a set of images which carries more information on the separability between the classes. Those selected dates can then be used to realize a supervised classification. Here three different classifiers are tested to evaluate if the smoothing techniques as a particular effect on the classification depending on the classifiers used. Those classifiers are Maximum Likelihood classifier, Spectral Angle Mapper (SAM) classifier and CHAID Improved Decision tree. It appears through the separability tests on the overall process that the smoothed profiles don't improve efficiently the potential of discrimination between classes when compared with the original data. However, the same tests realized on the MODIS sub-periods show better results obtained with the smoothed algorithms. The results of the classification confirm this first analyze. The Kappa coefficients are always better with the smoothing techniques and the results obtained with the WLS and SG smoothed profiles are nearly equal. However, the results are different depending on the classifier used. The impact of the smoothing algorithms is much better while using the decision tree model. Indeed, it allows a gain of 0.1 in the Kappa coefficient. While using the Maximum Likelihood end SAM models, the gain remains positive but is much lower (Kappa improved of 0.02 only). Thus, this work's aim is to prove the utility in smoothing the VI profiles in order to improve the final results. However, the choice of the smoothing algorithm has to be made considering the original data used and the classifier models used. In that case the Savitzky-Golay filter gave the better results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho apresenta uma abordagem teórica no que tange a erosão de margens (erosion of margins) e movimentos de massa (mass movement) na calha do rio Solimões (AM). Constitui resultados conduzidos por meio da análise comparativa de trabalhos realizados em ambientes fluviais. A metodologia consistiu de levantamentos de campo onde foram identificados e classificados os processos de erosão de margem e os tipos de movimentos massa, que resultam em impactos socioambientais sobre os moradores da paisagem de várzea na Amazônia. A realização da pesquisa foi trabalhada por meio das seguintes etapas: revisão bibliográfica, observação e mensuração direta no campo com análise descritiva dos processos, ao longo da costa da comunidade do Divino Espírito Santo. Para as mensurações e cadastros dos pontos de erosão utilizou-se trena, GPS, caderneta e fotografias digital (10.0 meg.pixels) obtidas na lateral dos barrancos para a visualização e identificação das formas e cicatrizes de movimentos de massa, nas zonas de perigo e riscos aos moradores. Os resultados citados neste trabalho vêm contribuir para o entendimento da complexa dinâmica fluvial, em especial os processos de erosão de margens e movimentos de massa que ocorrem com bastante intensidade ao longo da costa da comunidade do Divino Espírito Santo.