795 resultados para Pinning strength
Resumo:
High melt strength polypropylene (HMSPP) was synthesized by in situ heat induction reaction, in which pure polypropylene (PP) powders without any additives were used as a basic resin and vinyl trimethoxysilane (VTMS) as a grafting and crosslinking agent. The grafting reaction of VTMS with PP was confirmed by FTIR. The structure and properties of HMSPP were characterized by means of various measurements. The content of grafted silane played a key role on the melt strength and melt flow rate (MFR) of HMSPP. With increasing the content of grafted silane, the melt strength of HMSPP increased, and the MFR reduced. In addition, due to the existence of cross-linking structure, the thermal stability and tensile strength of HMSPP were improved compared with PP.
Resumo:
Ultrafine full-vulcanized polybutadiene rubber (UFBR) in particle sizes of ca. 50-100 nm has been used for modifying mechanical and processing performances of polypropylene (PP), and PP-g-maleic anhydride (PP-MA) has been used as a compatibilizer for enhancing the interfacial adhesion between the two components. The results show that PP/UFBR possesses rheological behaviors such as highly branched PP when UFBR content in blends reaches 10 wt%, while in contrast, the much low content of UFBR combining small amount of PP-MA endows the material with rheological characteristics of high melt strength materials like highly branched PP.
Novel Method for Preparation of Polypropylene Blends with High Melt Strength by Reactive Compounding
Resumo:
Ultrafine full-vulcanized polybutadiene rubber(UFBR) with particle sizes of ca. 50-100 nm were used for modifying mechanical and processing performances of polypropylene(PP) with PP-g-maleic anhydride(PP-g-MA) as a compatibilizer for enhancing the interfacial adhesion between the two components. The morphology, dynamical rheology response and mechanical properties of the blends were characterized by means of SEM, rheometer and tensile test, respectively.
Resumo:
La2Zr2O7 (LZ) and La-2(Zr0.7Ce0.3)(2)O-7 (LZ7C3) as novel candidate materials for thermal barrier coatings (TBCs) were prepared by electron beam-physical vapor deposition (EB-PVD). The adhesive strength of the as-deposited LZ and LZ7C3 coatings were evaluated by transverse scratch test. Meanwhile, the factors affecting the critical load value were also investigated. The critical load value of LZ7C3 coating is larger than that of LZ coating, whereas both values of these two coatings are lower than that of the traditional coating material, i.e. 8 wt% yttria stabilized zirconia (8YSZ). The micro-cracks formed in the scratch channel can partially release the stress in the coating and then enhance the adhesive strength of the coating. The width of the scratch channel and the surface spallation after transverse scratch test are effective factors to evaluate the adhesive strength of LZ and LZ7C3 coatings.
Resumo:
A series of novel polyampholyte superabsorbent nanocomposites with excellent gel strength were synthesized by in situ solution polymerization in aqueous solution. Acrylic acid and acryloyloxyethyl trimethyl ammonium chloride (DAC) were employed as ionic monomers and montmorillonite (MMT) was used as inorganic component. The addition of cationic component could supply the positive charge in the network of nanocomposite and promote the formation of nanostructure of composites due to the interaction between DAC and clay platelets. The performance of polyampholyte nanocomposites were investigated and the result showed that the gel strength of nanocomposite hydrogel in distilled water and 0.9 wt% NaCl solution could reach 198.85 and 204.23 mJ/g, respectively, which were 13 times of the gel strength of matrix. The investigation of swelling behaviors showed that the nanocomposites had particular swelling behaviors of polyampholytes hydrogel in solution with different pH values and concentration of NaCl.
Resumo:
The solid-solution-particle reinforced W(Al)-Ni composites were successfully fabricated by using mechanical alloying (MA) and hot-pressing (HP) technique when the content of Ni is between 45 wt% and 55 wt%. Besides, samples of various original component ratio of Al50W50 to Ni have been fabricated, and the corresponding microcomponents and mechanical properties such as microhardness, ultimate tensile strength and elongation were characterized and discussed. The optimum ultimate tensile strength under the experiment conditions is 1868 MPa with elongation of 10.21 % and hardness of 6.62 GPa. X-ray diffraction (XRD), FE-SEM and energy dispersive analysis of X-rays (EDS) were given to analysis the components and morphology of the composite bulk specimens.
Resumo:
The effects of three triblock copolymers of poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weight (MW) on the morphology, tensile strength and thermal behavior of isotactic polypropylene/syndiotactic polystyrene (iPP/sPS, 80/20) blend are investigated. Morphology observation shows that both the medium MW and the lower MW SEBS are more effective than the higher MW SEBS in compatibilizing the blends. Tensile tests revels both the medium and low MW compatibilizer lead to a significant improvement in tensile strength, while the higher MW compatibilizer is efficient in increasing the elongation at break of the blends. The localization of compatibilizers in the blends is observed by mean of SEM and the correlation between the distribution of the compatibilizers and mechanical properties of the blends is evaluated. The mechanical properties of the iPP/sPS blends depend on not only the interfacial activity of the compatibilizers but also the distribution of the compatibilizer in the blend. Addition of the compatibilizers to the blend causes a remarkable decrease in the magnitude of the crystallization peak of sPS at its usual T-c. Vicat softening points demonstrate that the heat resistance of iPP/sPS blend is much higher than that of the pure iPP.
Resumo:
Nanometer-scale elastic moduli and yield strengths of polycarbonate (PC) and polystyrene (PS) thin films were measured with atomic force microscopy (AFM) indentation measurements. By analysis of the AFM indentation force curves with the method by Oliver and Pharr, Young's moduli of PC and PS thin films could be obtained as 2.2 +/- 0.1 and 2.6 +/- 0.1 GPa, respectively, which agree well with the literature values. By fitting Johnson's conical spherical cavity model to the measured plastic zone sizes, we obtained yield strengths of 141.2 MPa for PC thin films and 178.7 MPa for PS thin films, which are similar to2 times the values expected from the literature. We propose that it is due to the AFM indentation being asymmetric, which was not accounted for in Johnson's model. A correction factor, epsilon, of similar to0.72 was introduced to rescale the plastic zone size, whereupon good agreement between theory and experiment was achieved.
Resumo:
The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon 1010 matrix. With increasing of dose, the elastic modulus increased, However, the tensile strength. elongation at bleak and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of particle size on impact strength of polymer blends with ductile fracture was studied. The results are in agreement with the experiments. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Free-standing film of polyaniline with excellent mechanical and electrical properties has been successfully prepared by using the solution-casting method. The results show that its tensile strength, Young's modulus and elongation at break are about 87.9 MPa, 1563.9 MPa and 10.2%, respectively. It is essential that the soluble polyaniline should be appropriately treated in some suitable organic solvents before making a free-standing film. Films having lustrous, smooth surface, high density and good flexibili...