979 resultados para Photoactive layers
Resumo:
Crystal size measurements have been carried out on tephra fall layers of Miocene to recent age from Sites 998, 999, and 1000 in the western Caribbean Sea. Maximum crystal size is used as a proxy for the grain size characteristics of the layers and an index of atmospheric dispersal from source eruptions. Crystal sizes range from 50 to 650 µm with the majority falling between 200 and 300 µm. All three sites exhibit a coarsening in the grain size of tephra layers with increasing age to the early Miocene that broadly correlates with an increase in the frequency of layers. Analysis of the present lower and upper level atmospheric circulation in the western Caribbean suggests that the layers were derived from source eruptions to the west of the sites somewhere in the Central American region. Minimum distances to these sources are of the order of 700 km. Crystal sizes in tephra layers at these distances are consistent with their derivation from energetic pyroclastic flow-forming eruptions that injected tephra to stratospheric levels by large-scale co-ignimbrite and plinian-style plumes. Coarsening of the layers during the Miocene peak of explosive volcanism cannot be attributed to any major change in paleowind intensity and is taken to represent the occurrence of more energetic eruptions that were able to disperse tephra over larger areas.
Resumo:
Volcanic ash layers (1-3 cm thick) are abundant in the North Aoba Basin drill sites but less common at forearc sites. Ash deposited on the forearc slopes is liable to be redistributed as turbidites. In addition, the westerly upper winds also minimize ash-fall on the western (forearc) side of the New Hebrides Island Arc. Crystalline components in the ashes are primarily plagioclase (An90-An44), clinopyroxene (Ca46Mg49Fe5-Ca43Mg33Fe24), olivine (Fo87-Fo62), and titanomagnetite. There are also small amounts of orthopyroxene, magnetite, apatite, and quartz. Glass shards occur in most of the ashes and range in composition from basalt to rhyolite. There is often a variety of glass compositions within a single ash layer. One explanation for this is that the rate of accumulation of ash from several different eruptions or eruptive phases exceeded the background sedimentation rate: there may also have been a certain amount of reworking. The high-K and low-K trends previously recognized in volcanic rocks from the New Hebrides Island Arc are clearly represented in the Leg 134 glasses. All of the ashes investigated here are thought to have originated from the Central Chain volcanoes. The source of the high-K group was probably the Central Basin volcanoes of Santa Maria, Aoba, and Ambrym. The lower-K series includes a distinctive group of dacites and is likely to have originated from the Epi-Tongoa-Tongariki sector of the arc where major pyroclastic eruptions, associated with caldera collapse, have occurred during the Holocene, perhaps as recently as 400 yr ago.
Resumo:
"UILU-ENG 80 1719"--Cover.
Resumo:
"CG 373-36."
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"Materials Laboratory, Contract no. AF 33(616)-5426, Project no. 7360."
Resumo:
"This report is based on research sponsored by the U.S. Navy through the Office of Naval Research, Contract Nonr-2653(00)"