944 resultados para Perinatal androgen blockade
Resumo:
Metformin is treatment of choice for the metabolic consequences seen in polycystic ovary syndrome for its insulin-sensitizing and androgen-lowering properties. Yet, the mechanism of action remains unclear. Two potential targets for metformin regulating steroid and glucose metabolism are AMP-activated protein kinase (AMPK) signaling and the complex I of the mitochondrial respiratory chain. Androgen biosynthesis requires steroid enzymes 17α-Hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), which are overexpressed in ovarian cells of polycystic ovary syndrome women. Therefore, we aimed to understand how metformin modulates androgen production using NCI-H295R cells as an established model of steroidogenesis. Similar to in vivo situation, metformin inhibited androgen production in NCI cells by decreasing HSD3B2 expression and CYP17A1 and HSD3B2 activities. The effect of metformin on androgen production was dose dependent and subject to the presence of organic cation transporters, establishing an important role of organic cation transporters for metformin's action. Metformin did not affect AMPK, ERK1/2, or atypical protein kinase C signaling. By contrast, metformin inhibited complex I of the respiratory chain in mitochondria. Similar to metformin, direct inhibition of complex I by rotenone also inhibited HSD3B2 activity. In conclusion, metformin inhibits androgen production by mechanisms targeting HSD3B2 and CYP17-lyase. This regulation involves inhibition of mitochondrial complex I but appears to be independent of AMPK signaling.
Resumo:
Patients with high risk prostate cancer with pT3 tumor and positive surgical margins have a high risk of biochemical failure after radical prostatectomy and adjuvant androgen deprivation therapy. Predictors of cancer related death in this patient group are necessary.
Resumo:
To assess whether blockade of the renin-angiotensin system (RAS), a recognized strategy to prevent the progression of diabetic nephropathy, affects renal tissue oxygenation in type 2 diabetes mellitus (T2DM) patients.
Resumo:
Background: Therapeutic hypothermia (TH) following perinatal asphyxial encephalopathy in term infants improves mortality and neurodevelopmental outcome. In Europe, most neonatal units perform active cooling whereas in Switzerland passive cooling is predominantly used. Aims: (i) To determine how many infants were cooled within the last 5 years in Switzerland, (ii) to assess the cooling methods, (iii) to evaluate the variation of temperature of different cooling methods, and (iv) to evaluate the use of neuromonitoring. Study design: Retrospective cohort study. Patients: Notes of all cooled term infants between March 2005 and December 2010 in 9 perinatal and two paediatric intensive care centres were retrospectively reviewed. Active cooling was compared to passive cooling alone and to passive cooling in combination with gel packs. Results: 150 infants were cooled. Twenty-seven (18.2%) were cooled actively, 34 (23%) passively and 87 (58.8%) passively in combination with gel packs. Variation of temperature was significantly different between the three methods. Passive cooling had a significant higher variation of temperature (SD of 0.89) than both passive cooling in combination with gel packs (SD of 0.79) and active cooling (SD of 0.76). aEEG before TH was obtained in 35.8% of the infants and 86.5% had full EEG. One cUS was performed in 95.3% and MRI in 62.2% of the infants. Conclusion: Target temperature can be achieved with all three cooling methods. Passive cooling has the highest variation of temperature. Neuromonitoring should be improved in Swiss neonatal and paediatric intensive care units. Our results stress the importance of national registries.
Resumo:
PURPOSE: This study (EORTC 30891) attempted to demonstrate equivalent overall survival in patients with localized prostate cancer not suitable for local curative treatment treated with immediate or deferred androgen ablation. PATIENTS AND METHODS: We randomly assigned 985 patients with newly diagnosed prostate cancer T0-4 N0-2 M0 to receive androgen deprivation either immediately (n = 493) or on symptomatic disease progression or occurrence of serious complications (n = 492). RESULTS: Baseline characteristics were well balanced in the two groups. Median age was 73 years (range, 52 to 81). At a median follow-up of 7.8 years, 541 of 985 patients had died, mostly of prostate cancer (n = 193) or cardiovascular disease (n = 185). The overall survival hazard ratio was 1.25 (95% CI, 1.05 to 1.48; noninferiority P > .1) favoring immediate treatment, seemingly due to fewer deaths of nonprostatic cancer causes (P = .06). The time from randomization to progression of hormone refractory disease did not differ significantly, nor did prostate-cancer specific survival. The median time to the start of deferred treatment after study entry was 7 years. In this group 126 patients (25.6%) died without ever needing treatment (44% of the deaths in this arm). CONCLUSION: Immediate androgen deprivation resulted in a modest but statistically significant increase in overall survival but no significant difference in prostate cancer mortality or symptom-free survival. This must be weighed on an individual basis against the adverse effects of life-long androgen deprivation, which may be avoided in a substantial number of patients with a deferred treatment policy.
Resumo:
Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the human gonads as well as the adrenals. We studied the regulation of androgen production by analyzing the effect of pioglitazone and rosiglitazone on steroidogenesis in human adrenal NCI-H295R cells, an established in vitro model of steroidogenesis of the human adrenal cortex. Both TZDs changed the steroid profile of the NCI-H295R cells and inhibited the activities of P450c17 and 3betaHSDII, key enzymes of androgen biosynthesis. Pioglitazone but not rosiglitazone inhibited the expression of the CYP17 and HSD3B2 genes. Likewise, pioglitazone repressed basal and 8-bromo-cAMP-stimulated activities of CYP17 and HSD3B2 promoter reporters in NCI-H295R cells. However, pioglitazone did not change the activity of a cAMP-responsive luciferase reporter, indicating that it does not influence cAMP/protein kinase A/cAMP response element-binding protein pathway signaling. Although peroxisome proliferator-activated receptor gamma (PPARgamma) is the nuclear receptor for TZDs, suppression of PPARgamma by small interfering RNA technique did not alter the inhibitory effect of pioglitazone on CYP17 and HSD3B2 expression, suggesting that the action of pioglitazone is independent of PPARgamma. On the other hand, treatment of NCI-H295R cells with mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) enhanced promoter activity and expression of CYP17. This effect was reversed by pioglitazone treatment, indicating that the MEK/ERK signaling pathway plays a role in regulating androgen biosynthesis by pioglitazone.
Resumo:
OBJECTIVE: Mesenchymal stem cells (MSCs) have a broad differentiation potential. We aimed to determine if MSCs are present in fetal membranes and placental tissue and to assess their potential to differentiate into neurogenic and mesodermal lineages. STUDY DESIGN: MSCs isolated from first and third trimester chorion and amnion and first trimester chorionic villi and characterized morphologically and by flourescence-activated cell sorting analysis. Their ability to mature under different culture conditions into various cells of mesodermal and neuroectodermal cell lines was assessed by immuno- and cytochemical staining. RESULTS: Independent of gestational age, cells isolated from fetal membranes and placenta showed typical MSC phenotype (positive for CD166, CD105, CD90, CD73, CD49e, CD44, CD29, CD13, MHC I; negative for CD14, CD34, CD45, MHC II) and were able to differentiate into mesodermal cells expressing cell markers/cytologic staining consistent with mature chondroblasts, osteoblasts, adipocytes, or myocytes and into neuronal cells presenting markers of various stages of maturation. The differentiation pattern was mainly dependent on cell type. CONCLUSION: Mesenchymal cells from chorion, amnion, and villous stroma can be differentiated into neurogenic, chondrogenic, osteogenic, adipogenic, and myogenic lineage. Placental tissue obtained during prenatal chorionic villous sampling or at delivery might be an ideal source for autologous stem cell graft for peripartum neuroregeneration and other clinical issues.
Resumo:
Mammalian birth is accompanied by profound changes in metabolic rate that can be described in terms of body size relationship (Kleiber's rule). Whereas the fetus, probably as an adaptation to the low intrauterine pO2, exhibits an "inappropriately" low, adult-like specific metabolic rate, the term neonate undergoes a rapid metabolic increase up to the level to be expected from body size. A similar, albeit slowed, "switching-on" of metabolic size allometry is found in human preterm neonates whereas animals that are normally born in a very immature state are able to retard or even suppress the postnatal metabolic increase in favor of weight gain and O2 supply. Moreover, small immature mammalian neonates exhibit a temporary oxyconforming behavior which enhances their hypoxia tolerance, yet is lost to the extent by which the size-adjusted metabolic rate is "locked" by increasing mitochondrial density. Beyond the perinatal period, there are no other deviations from metabolic size allometry among mammals except in hibernation where the temporary "switching-off" of Kleiber's rule is accompanied by a deep reduction in tissue pO2. This gives support to the hypothesis that the postnatal metabolic increase represents an "escape from oxygen" similar to the evolutionary roots of mitochondrial respiration, and that the overall increase in specific metabolic rate with decreasing size might contribute to prevent tissues from O2 toxicity.