958 resultados para Pelvic limb
Resumo:
Inhalation anesthesia with isoflurane is a well-established and safe method used in small laboratory animals. In most cases oxygen is used as a carrier gas for isoflurane, but room air or mixtures of oxygen with air or nitrous oxide are also being used. Anesthesia is therefore administered using different fractions of inspired oxygen (FiO2), and this may have consequences for the outcome of experiments. The aim of the present study was to investigate the influence of FiO2 on rat hind limb ischemia/reperfusion injury and to refine the used inhalation anesthesia. Male Wistar rats were subjected to 3.5 h of ischemia and 2 h of reperfusion, and divided into three groups according to FiO2 in the O2/air/isoflurane anesthesia gas mixture: 40%, 60%, and 100% O2. Normal, healthy rats were used as controls. Muscle edema and creatine kinase MM, a marker for myocyte necrosis, were significantly increased with 40% FiO2 as compared with 100% FiO2 (P<0.05). Partial pressure of oxygen, oxygen saturation, and oxyhemoglobin were significantly higher in the 100% O2 group as compared with 40% O2. No significant differences were detected for other parameters, such as the oxidative stress markers malondialdehyde and superoxide dismutase. We conclude that a refined inhalation anesthesia setting using 40% FiO2, reflecting more or less the clinical situation, leads to a more severe and more physiologically relevant reperfusion injury than higher FiO2. Oxidative stress did not correlate with FiO2 and seemed to have no influence on reperfusion injury.
Resumo:
OBJECTIVE Recent small single-center data indicate that the current hemodynamic parameters used to diagnose critical limb ischemia are insensitive. We investigated the validity of the societal guidelines-recommended hemodynamic parameters against core laboratory-adjudicated angiographic data from the multicenter IN.PACT DEEP (RandomIzed AmPhirion DEEP DEB vs StAndard PTA for the treatment of below the knee Critical limb ischemia) Trial. METHODS Of the 358 patients in the IN.PACT DEEP Trial to assess drug-eluting balloon vs standard balloon angioplasty for infrapopliteal disease, 237 had isolated infrapopliteal disease with an available ankle-brachial index (ABI), and only 40 of the latter had available toe pressure measurements. The associations between ABI, ankle pressure, and toe pressure with tibial runoff, Rutherford category, and plantar arch were examined according to the cutoff points recommended by the societal guidelines. Abnormal tibial runoff was defined as severely stenotic (≥70%) or occluded and scored as one-, two-, or three-vessel disease. A stenotic or occluded plantar arch was considered abnormal. RESULTS Only 14 of 237 patients (6%) had an ABI <0.4. Abnormal ankle pressure, defined as <50 mm Hg if Rutherford category 4 and <70 mm Hg if Rutherford category 5 or 6, was found only in 37 patients (16%). Abnormal toe pressure, defined as <30 mm Hg if Rutherford category 4 and <50 mm Hg if Rutherford category 5 or 6, was found in 24 of 40 patients (60%) with available measurements. Importantly, 29% of these 24 patients had an ABI within normal reference ranges. A univariate multinomial logistic regression found no association between the above hemodynamic parameters and the number of diseased infrapopliteal vessels. However, there was a significant paradoxic association where patients with Rutherford category 6 had higher ABI and ankle pressure than those with Rutherford category 5. Similarly, there was no association between ABI and pedal arch patency. CONCLUSIONS The current recommended hemodynamic parameters fail to identify a significant portion of patients with lower extremity ulcers and angiographically proven severe disease. Toe pressure has better sensitivity and should be considered in all patients with critical limb ischemia.
Resumo:
Sentinel lymph node (SLN) detection techniques have the potential to change the standard of surgical care for patients with prostate cancer. We performed a lymphatic mapping study and determined the value of fluorescence SLN detection with indocyanine green (ICG) for the detection of lymph node metastases in intermediate- and high-risk patients undergoing radical prostatectomy and extended pelvic lymph node dissection. A total of 42 patients received systematic or specific ICG injections into the prostate base, the midportion, the apex, the left lobe, or the right lobe. We found (1) that external and internal iliac regions encompass the majority of SLNs, (2) that common iliac regions contain up to 22% of all SLNs, (3) that a prostatic lobe can drain into the contralateral group of pelvic lymph nodes, and (4) that the fossa of Marcille also receives significant drainage. Among the 12 patients who received systematic ICG injections, 5 (42%) had a total of 29 lymph node metastases. Of these, 16 nodes were ICG positive, yielding 55% sensitivity. The complex drainage pattern of the prostate and the low sensitivity of ICG for the detection of lymph node metastases reported in our study highlight the difficulties related to the implementation of SNL techniques in prostate cancer. PATIENT SUMMARY There is controversy about how extensive lymph node dissection (LND) should be during prostatectomy. We investigated the lymphatic drainage of the prostate and whether sentinel node fluorescence techniques would be useful to detect node metastases. We found that the drainage pattern is complex and that the sentinel node technique is not able to replace extended pelvic LND.
Resumo:
As pelvic fractures in children and adolescents are very rare, the surgical management is not well delineated nor are the postoperative complications. The aim of this study using the prospective data from German Pelvic Trauma Registry study was to evaluate the various treatment approaches compared to adults and delineated the differences in postoperative complications after pelvic injuries.Using the prospective pelvic trauma registry established by the German Society of Traumatology and the German Section of the Arbeitsgemeinschaft für Osteosynthesefragen (AO), International in 1991, patients with pelvic fractures over a 12-year time frame submitted by any 1 of the 23 member level I trauma centers were reviewed.We identified a total of 13,525 patients including pelvic fractures in 13,317 adults and 208 children aged ≤14 years and compared these 2 groups. The 2 groups' Injury Severitiy Score (ISS) did not differ statistically. Lethality in the pediatric group was 6.3%, not statistically different from the adults' 4.6%. In all, 18.3% of the pediatric pelvic fractures were treated surgically as compared to 22.7% in the adult group. No child suffered any thrombosis/embolism, acute respiratory distress syndrome (ARDS), multiorgan failure (MOF), or neurologic deficit, nor was any septic MOF detected. The differences between adults and children were statistically significant in that the children suffered less frequently from thrombosis/embolism (P = 0.041) and ARDS and MOF (P = 0.006).This prospective multicenter study addressing patients with pelvic fractures reveals that the risk for a thrombosis/embolism, ARDS, and MOF is significant lower in pediatric patients than in adults. No statistical differences could be found in the ratios of operative therapy of the pelvic fractures in children compared to adults.
Resumo:
Fractures of the pelvic ring are comparatively rare with an incidence of 2-8 % of all fractures depending on the study in question. The severity of pelvic ring fractures can be very different ranging from simple and mostly "harmless" type A fractures up to life-threatening complex type C fractures. Although it was previously postulated that high-energy trauma was necessary to induce a pelvic ring fracture, over the past decades it became more and more evident, not least from data in the pelvic trauma registry of the German Society for Trauma Surgery (DGU), that low-energy minor trauma can also cause pelvic ring fractures of osteoporotic bone and in a rapidly increasing population of geriatric patients insufficiency fractures of the pelvic ring are nowadays observed with no preceding trauma.Even in large trauma centers the number of patients with pelvic ring fractures is mostly insufficient to perform valid and sufficiently powerful monocentric studies on epidemiological, diagnostic or therapeutic issues. For this reason, in 1991 the first and still the only registry worldwide for the documentation and evaluation of pelvic ring fractures was introduced by the Working Group Pelvis (AG Becken) of the DGU. Originally, the main objectives of the documentation were epidemiological and diagnostic issues; however, in the course of time it developed into an increasingly expanding dataset with comprehensive parameters on injury patterns, operative and conservative therapy regimens and short-term and long-term outcome of patients. Originally starting with 10 institutions, in the meantime more than 30 hospitals in Germany and other European countries participate in the documentation of data. In the third phase of the registry alone, which was started in 2004, data from approximately 15,000 patients with pelvic ring and acetabular fractures were documented. In addition to the scientific impact of the pelvic trauma registry, which is reflected in the numerous national and international publications, the dramatically changing epidemiology of pelvic ring fractures, further developments in diagnostics and the changes in operative procedures over time could be demonstrated. Last but not least the now well-established diagnostic and therapeutic algorithms for pelvic ring fractures, which could be derived from the information collated in registry studies, reflect the clinical impact of the registry.
Resumo:
Lmx1b encodes a LIM-homeodomain transcription factor required for dorso-ventral (D-V) patterning in the mesenchyme of the vertebrate limb. In the absence of Lmx1b function, limbs exhibit a bi-ventral pattern indicating that Lmx1b is required for cells to adopt a dorsal cell fate. However, how Lmx1b specifies dorsal cell fates in the mesenchyme of the distal limb is unknown. Lmx1b is initially expressed throughout the dorsal and ventral limb bud mesenchyme, then becomes dorsally restricted around E10.5. At this stage, there is a sharp boundary between Lmx1b expressing and Lmx1b non-expressing cells. How the dorso-ventral Lmx1b expression boundary is formed and maintained is currently unknown. One mechanism that may contribute to establishing and/or maintaining the Lmx1b expression boundary is if the dorsal mesenchyme is a lineage-based compartment, where different groups of non-mingling cells are separated. Compartment formation has been proposed to rely on compartment-specific selector gene activity which functions to restrict cells to a compartment and specifies the identity of cells within that compartment. Based on the evidence that the dorsal limb identity relies on the expression of Lmx1b in the dorsal half of the limb mesenchyme, we hypothesized that Lmx1b might function as a dorsal limb bud mesenchyme selector gene to set up a dorsal compartment. To test this hypothesis, we developed an inducible CreERT2/ loxP based fate mapping approach that permanently marks Lmx1b wild-type and mutant cells and examined the distribution of their descendents in the developing limb. Our data is the first to show that dorso-ventral lineage compartments exist in the limb bud mesenchyme. Furthermore, Lmx1b is required for maintenance of the dorso-ventral compartment lineage boundary. The behavior of Lmx1b mutant cells that cross into the ventral mesenchyme, as well as previous chimera analysis in which mutant cells spread evenly in the ventral limb and form patches in the dorsal side, suggest that cell affinity differences prevent intermingling of dorsal and ventral cells. ^
Resumo:
Divergence of anterior-posterior (AP) limb pattern and differences in vertebral column morphology are the two main examples of mammalian evolution. The Hox genes (homeobox containing gene) have been implicated in driving evolution of these structures. However, regarding Hox genes, how they contribute to the generation of mammalian morphological diversities, is still unclear. Implementing comparative gene expression and phenotypic rescue studies for different mammalian Hox genes could aid in unraveling this mystery. In the first part of this thesis, the expression pattern of Hoxd13 gene, a key Hox gene in the establishment of the limb AP pattern, was examined in developing limbs of bats and mice. Bat forelimbs exhibit a pronounced asymmetric AP pattern and offer a good model to study the molecular mechanisms that contribute to the variety of mammalian limbs. The data showed that the expression domain of bat Hoxd13 was shifted prior to the asymmetric limb plate expansion, whereas its domain in mice was much more symmetric. This finding reveals a correlation between the divergence of Hoxd13 expression and the AP patterning difference in limb development. The second part of this thesis details a phenotypic rescue approach by human HOXB1-9 transgenes in mice with Hoxb1-9 deletion, The mouse mutants displayed homeosis in cervical and anterior thoracic vertebrae. The human transgenes entirely rescued the mouse mutants, suggesting that these human HOX genes have similar functions to their mouse orthologues in anterior axial skeletal patterning. The anterior expressing human HOXB transgenes such as HOXB1-3 were expressed in the mouse embryonic trunk in a similar manner as their murine orthologues. However, the anterior boundary of human HOXB9 expression domain was more posterior than that of the mouse Hoxb9 by 2-3 somites. These data provide the molecular support for the hypothesis that Hox genes are responsible for maintaining similar anterior axial skeletal architectures cervical and anterior thoracic regions, but different architectures in lumbar and posterior thoracic regions between humans and mice. ^
Resumo:
One of the most widely accepted noncontraceptive benefits of oral contraceptive use is the reduction in the development of pelvic inflammatory disease (PID) and its sequelae in users. While much of the research over the past forty years has found an association between oral contraceptive use and reduced rates of PID [Senanayake, 1980], more recent studies have qualified and even challenged this widely held belief. [Henry-Suchet, 1997; Ness 1997; Ness, 2001] PID, an infection in the upper genital tract causing infertility and ectopic pregnancy, affects over one million women in the United States each year, exacting an enormous toll on women's reproductive and emotional health, as well as our economy. [CDC Factsheet, 2007] This thesis examines the public health implications of pelvic inflammatory disease and the use of oral contraceptives. Sixteen original studies are reviewed and analyzed, thirteen of which found a protective benefit with oral contraceptive use against PID and three more recent studies which found no protective benefit or association between oral contraceptive use and PID. Analysis of the research findings suggests a need for additional research, provider and patient education, and an increased government role in addressing the ongoing and significant public health concerns raised by current rates of Chlamydia- and gonorrheal-PID. ^
Resumo:
Objective. Congenital limb defects are common birth defects occurring in approximately 2-7/10,000 live births. Because congenital limb defects are pervasive throughout all populations, and the conditions profoundly affect quality of life, they represent a significant public health concern. Currently there is a paucity of etiologic information in the literature regarding congenital limb reduction defects which represents a major limitation in developing treatment strategies as well as identifying high risk pregnancies. ^ Additionally, despite the fact that the majority of congenital limb reduction defects are isolated, most previous studies have not separated them from those occurring as part of a known syndrome or with multiple additional congenital anomalies of unknown etiology. It stands to reason that factors responsible for multiple congenital anomalies that happen to include congenital limb reduction defects may be quite different from those factors leading to an isolated congenital limb reduction defect. ^ As a first step toward gaining etiologic understanding, this cross-sectional study was undertaken to determine the birth prevalence and obtain demographic information about non-syndromic (isolated) congenital limb reduction defects that occurred in Texas from 1999-2001. ^ Methods. The study population included all infants/fetuses with isolated congenital limb reduction defects born in Texas during 1999-2001; the comparison population was all infants who were born to mothers who were residents of Texas during the same period of time. The overall birth prevalence of limb reduction defects was determined and adjusted for ethnicity, gender, site of defect (upper limb versus lower limb), county of residence, maternal age and maternal education. ^ Results. In Texas, the overall birth prevalence of isolated CLRDs was 2.1/10,000 live births (1.5 and 0.6/10,000 live births for upper limb and lower limb, respectively). ^ The risk of isolated lower limb CLRDs in Texas was significantly lower in females when gender was examined individually (crude prevalence odds ratio of 0.57, 95% CI of 0.36-0.91) as well as in relation to all other variables used in the analysis (adjusted prevalence odds ratio of 0.58, 95% CI of 0.36-0.93). ^ Harris County (which includes the Houston metropolitan area) had significantly lower risks of all (upper limb and lower limb combined) isolated CLRDs when examined in relation to other counties in Texas, with a crude prevalence odds ratio of 0.4 (95% CI: 0.29-0.72) and an adjusted prevalence odds ratio of 0.50 (95% CI: 0.31-0.80). The risk of isolated upper limb CLRDs was significantly lower in Harris County (crude prevalence odds ratio of 0.45, CI of 0.26-0.76 and adjusted prevalence odds ratio of 0.49, CI of 0.28-0.84). This trend toward decreased risk in Harris County was not observed for isolated lower limb reduction defects (adjusted prevalence odds ratio of 0.50, 95% confidence interval: 0.22-1.12). ^ Conclusions. The birth prevalence of isolated congenital limb reduction defects in Texas is in the lower limits of the range of rates that have been reported by other authors for other states (Alabama, Arkansas, California, Georgia, Hawaii, Iowa, Maryland, Massachusetts, North Carolina, Oklahoma, Utah, Washington) and other countries (Argentina, Australia, Austria, Bolivia, Brazil, Canada, Chile, China, Colombia, Costa Rica, Croatia, Denmark, Ecuador, England, Finland, France, Germany, Hungary, Ireland, Israel, Italy, Lithuania, Mexico, Norway, Paraguay, Peru, Spain, Scotland, Sweden, Switzerland, Uruguay, and Venezuela). In Texas, the birth prevalence of isolated congenital lower limb reduction defects was greater for males than females, while the birth prevalence of isolated congenital upper limb reduction defects was not significantly different between males and females. The reduced rates of limb reduction defects in Harris County warrant further investigation. This study has provided an important first step toward gaining etiologic understanding in the study of isolated congenital limb reduction defects. ^
Resumo:
The underlying genetic defects of a congenital disease Nail-Patella Syndrome are loss-of-function mutations in the LMX1B gene. Lmx1b encodes a LIM-homeodomain transcription factor that is expressed specifically in the dorsal limb bud mesenchyme. Gain- and loss-of-function experiments suggest that Lmx1b is both necessary and sufficient to specify dorsal limb patterning. However, how Lmx1b coordinates patterning of the dorsal tissues in the limb, including muscle, skeleton and connective tissues, remains unknown. One possibility is that each tissue specifies its own pattern cell-autonomously, i.e., Lmx1b is expressed in tissues in which it functions and different tissues do not communicate with each other. Another possibility is that tissues that express Lmx1b interact with adjacent tissues and provide patterning information thereby directing the development of tissues non-cell-autonomously. Previous results showed that Lmx1b is expressed in limb connective tissue and skeleton, but is not expressed in muscle tissue. Moreover, muscles and muscle connective tissue are closely associated during development. Therefore, we hypothesize that Lmx1b controls limb muscle dorsal-ventral (DV) patterning through muscle connective tissue, but regulates skeleton and tendon/ligament development cell-autonomously. ^ To test this hypothesis, we first examined when and where the limb dorsal-ventral asymmetry is established during development. Subsequently, conditional knockout and overexpression experiments were performed to delete or activate Lmx1b in different tissues within the limb. Our results show that deletion of Lmx1b from whole limb mesenchyme results in all dorsal tissues, including muscle, tendon/ligament and skeleton, transforming into ventral structures. Skeleton-specific knockout of Lmx1b led to the dorsal duplication of distal sesamoid and metacarpal bones, but did not affect the pattern formation of other tissues, suggesting that Lmx1b controls skeleton development cell-autonomously. In addition, this skeleton-specific pattern alteration only occurs in distal limb tissues, not proximal limb tissues, indicating different regulatory mechanisms operate along the limb proximal-distal axis. Moreover, skeleton-specific ectopic expression of Lmx1b reveals a complementary skeletal-specific dorsalized phenotype. This result supports a cell-autonomous role for Lmx1b in dorsal-ventral skeletal patterning. This study enriched our understanding of limb development, and the insights from this research may also be applicable for the development of other organs. ^
Resumo:
The primary objectives of the study were to measure the incidence of pelvic endometriosis among white females of reproductive age (15-49 years) in Rochester, Minnesota, during the period 1970-1979 and to determine the risk of endometriosis by age, marital status, nun status, and educational attainment in this population. An historical prospective design was used. Incident (newly diagnosed) cases were identified from community medical records, and person-years of risk in the study population were estimated from census data.^ Almost two-thirds of the incident cases had surgically verified endometriosis, while the remainder were diagnosed by clinical findings alone. Incidence rates were prepared first with histologically confirmed cases only and then with the successive inclusion of less certain cases: surgically visualized, clinically probable, and clinically possible. On this basis, overall incidence rates were 108.8 to 246.9 newly diagnosed cases per 100,000 person-years. The incidence of pelvic endometriosis was lowest for women 15-19 years of age, increased markedly through age 44, and then declined for women 45-49 years of age. A significantly greater risk of pelvic endometriosis in never married women was detected only when the numerator was limited to histologically confirmed cases. Among never married women 20-49 years of age, no significant difference in the risk of pelvic endometriosis by nun status was detected, but a trend toward a lower incidence in nuns was observed. Women with education beyond high school had a significantly higher incidence of endometriosis than women with less education.^ Cases in the four diagnostic groups differed greatly by age and marital status but were similar with respect to virtually all other characteristics, once age differences were considered. Reproductive history characteristics described included: age of menarche; history of menopause; total pregnancies; ages of first pregnancy, marriage, and sexual intercourse; years from menarche to first intercourse; years of ovulatory cycling; difficulty becoming pregnant; and delay of the first pregnancy by choice. How these characteristics of incident cases differ from those of women free of endometriosis needs to be studied in future research. ^
Resumo:
Transcriptional enhancers are genomic DNA sequences that contain clustered transcription factor (TF) binding sites. When combinations of TFs bind to enhancer sequences they act together with basal transcriptional machinery to regulate the timing, location and quantity of gene transcription. Elucidating the genetic mechanisms responsible for differential gene expression, including the role of enhancers, during embryological and postnatal development is essential to an understanding of evolutionary processes and disease etiology. Numerous methods are in use to identify and characterize enhancers. Several high-throughput methods generate large datasets of enhancer sequences with putative roles in embryonic development. However, few enhancers have been deleted from the genome to determine their roles in the development of specific structures, such as the limb. Manipulation of enhancers at their endogenous loci, such as the deletion of such elements, leads to a better understanding of the regulatory interactions, rules and complexities that contribute to faithful and variant gene transcription – the molecular genetic substrate of evolution and disease. To understand the endogenous roles of two distinct enhancers known to be active in the mouse embryo limb bud we deleted them from the mouse genome. I hypothesized that deletion of these enhancers would lead to aberrant limb development. The enhancers were selected because of their association with p300, a protein associated with active transcription, and because the human enhancer sequences drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. To confirm that the orthologous mouse enhancers, mouse 280 and 1442 (M280 and M1442, respectively), regulate expression in the developing limb we generated stable transgenic lines, and examined lacZ expression. In M280-lacZ mice, expression was detected in E11.5 fore- and hindlimbs in a region that corresponds to digits II-IV. M1442-lacZ mice exhibited lacZ expression in posterior and anterior margins of the fore- and hindlimbs that overlapped with digits I and V and several wrist bones. We generated mice lacking the M280 and M1442 enhancers by gene targeting. Intercrosses between M280 -/+ and M1442 -/+, respectively, generated M280 and M1442 null mice, which are born at expected Mendelian ratios and manifest no gross limb malformations. Quantitative real-time PCR of mutant E11.5 limb buds indicated that significant changes in transcriptional output of enhancer-proximal genes accompanied the deletion of both M280 and M1442. In neonatal null mice we observed that all limb bones are present in their expected positions, an observation also confirmed by histology of E18.5 distal limbs. Fine-scale measurement of E18.5 digit bone lengths found no differences between mutant and control embryos. Furthermore, when the developmental progression of cartilaginous elements was analyzed in M280 and M1442 embryos from E13.5-E15.5, transient development defects were not detected. These results demonstrate that M280 and M1442 are not required for mouse limb development. Though M280 is not required for embryonic limb development it is required for the development and/or maintenance of body size – adult M280 mice are significantly smaller than control littermates. These studies highlight the importance of experiments that manipulate enhancers in situ to understand their contribution to development.
Resumo:
This thesis is centered on applying molecular genetics to study pattern formation during animal development. More specifically, this thesis describes the functional studies of a LIM-homeodomain gene called lmx1b during murine embryogenesis. Lmx1b expression is restricted to the mid-hindbrain junction as well as to the dorsal mesenchyme of the limb, suggesting important functions during mid-hindbrain and limb development. To test these possibilities, lmx1b homozygous mutant mice were generated and their limb and CNS phenotypes examined. Lmx1b homozygous mutant mice exhibit a large reduction of mid-hindbrain structures, and that their limbs are symmetrical along the dorsal-ventral axis as the result of a dorsal to ventral transformation. Taken together, these studies define essential functions for lmx1b in mid-hindbrain patteming and in dorsal limb cell fate determination. However, the molecular mechanisms which accounts for these phenotypes are unknown, and whether lmx1b has same or distinctive functions during the mid-hindbrain and limb development is also unclear. ^ Recently, insight into molecular mechanisms of mid-hindbrain patterning and limb development has resulted from the identification of several factors with restricted expression patterns within these regions. These include the secreted factors wnt-1, fgf-8, wnt-7a and the transcription factors pax-2, and en-1. Targeted disruption of any of these genes in mice suggests that these genes might be involved in similar regulatory pathways. Analysis of the expression of these genes in lmx1b mutants demonstrates that lmxlb is not required for the initiation, but is required to maintain their expression at the mid-hindbrain junction. Thus, lmxlb is not required for specifying mid-hindbrain cell fates, rather, it functions to ensure the establishment or maintenance of a proper organizing center at the mid-hindbrain junction. Interestingly, lmxlb functions cell non-autonomously in chimera analysis, which indicates that lmx1b might regulate the expression of secreted factors such as wnt-1 and/or fgf-8 in the organizing center. In contrast, lmx1b functions cell autonomously in the dorsal limb to govern dorsal ventral limb development and its expression is regulated by with wnt-7a and en-1. However, single and double mutant analysis suggest that all three genes have partially overlapping functions as well as independent functions. The results point toward a complicated network of cross-talks among all three limb axes. ^
Resumo:
CFC-11 (CCl3F), CFC-12 (CCl2F2), HF, and SF6 products from limb-viewing satellite instruments are provided in the form of monthly zonal mean time series obtained from HALOE, MIPAS, ACE-FTS, and HIRDLS within the time period 1991-2010. The data products are made available as part of the Stratosphere-troposphere Processes And their Role in Climate (SPARC) Data Initiative. The trace gas time series extend from the mid-troposphere to as high as the mesosphere. The zonal monthly mean time series are calculated on the SPARC Data Initiative climatology grid using 5° latitude bins and 28 pressure levels. The zonal monthly mean volume mixing ratio (VMR) and the standard deviation along with the number of averaged data values are given for each month, latitude bin, and pressure level. Furthermore, the mean, minimum, and maximum local solar time, the average latitude, and the average day of the month within each bin for one selected pressure level are provided. The time series of all variables are saved in a consistent netcdf format.
Resumo:
Here an inertial sensor-based monitoring system for measuring and analyzing upper limb movements is presented. The final goal is the integration of this motion-tracking device within a portable rehabilitation system for brain injury patients. A set of four inertial sensors mounted on a special garment worn by the patient provides the quaternions representing the patient upper limb’s orientation in space. A kinematic model is built to estimate 3D upper limb motion for accurate therapeutic evaluation. The human upper limb is represented as a kinematic chain of rigid bodies with three joints and six degrees of freedom. Validation of the system has been performed by co-registration of movements with a commercial optoelectronic tracking system. Successful results are shown that exhibit a high correlation among signals provided by both devices and obtained at the Institut Guttmann Neurorehabilitation Hospital.