999 resultados para PT-SN
Resumo:
制备了炭载四苯基钴卟啉(CoTPP)和Pt(CoTPP-Pt/C)复合催化剂,研究了炭载四苯基铁卟啉对氧还原的电催活性。电化学研究发现,CoTPP-Pt/C催化剂对氧还原有很高的电催化活性。CoTPP-Pt/C催化剂对氧还原的极限电流密度比Pt/C催化剂高30%左右,但抗甲醇的能力未改善。
Resumo:
Equilibrium geometries, vibrational frequencies, and dissociation energies of the transition metal carbonyls MCO (M = Nb, Ta, Rh, Ir, Pd, Pt) were studied by use of diverse density functional methods B3LYP, BLYP, B3P86, B3PW91, BHLYP, BP86, and PBE1PBE. It was found that the ground electronic state is (6)Sigma(+) for NbCO and TaCO, (2)Sigma(+) for RhCO,(2)Delta for IrCO, and (1)Sigma(+) for PdCO and PtCO, in agreement with previous theoretical studies. The calculated properties are highly dependent on the functionals employed, in particular for the dissociation energy. For most of the molecules, the predicted bond distance is in agreement with experiments and previous theoretical results. BHLYP is the worst method in reproducing the experimental results compared with the other density functional methods for the title molecules.
Resumo:
探索了一种适用于 Pt/CNTs催化剂的纯化方法 .利用比表面积测定、 X射线衍射 ( XRD)、透射电子显微镜 ( TEM)和电化学等手段进行了表征 .研究结果表明 ,经该方法纯化的 CNTs作为载体制备的阳极催化剂表现出明显优于相应的混酸氧化法纯化的 CNTs为载体的催化剂催化性能
Resumo:
引言近年来,直接甲醇燃料电池(DMFC)由于其燃料来源丰富、价格低廉、甲醇携带和储存安全方便等独特的优越性而越来越受到重视[1]。但是甲醇具有一定的毒性,因此要想实现DMFC在诸如手机、笔记本电脑以及电动车等可移动电源领域的应用,必须探索新的液体燃料以替代有毒性的甲醇。其中乙醇很易从农作物中大量生产,又无毒,因此很有可能用作替代甲醇的质子交换膜燃料电池燃料。近年来乙醇的电催化氧化已被众多的研究者从电催化和乙醇燃料电池的角度进行了广泛的研究[2,3]。但是乙醇在Pt电极上的氧化易导致强吸附物种CO毒化催化剂,Pt鄄Ru合金是目前强吸附毒化物种CO易氧化为CO2的最有效的电催化剂,因此近年来也有一些关于Pt鄄Ru合金催化剂对乙醇的电化学氧化的研究[4~6]。我们研究组首次用固相反应法制备了Pt/C催化剂,发现所制得的Pt/C催化剂对甲醇[7]和乙醇[8]氧化的电催化性能要比用传统的液相反应法制得的Pt/C催化剂好很多。但Pt/C催化剂对甲醇和乙醇氧化的电催化活性还是较低,因此,本文首次研究了用固相反应法制备Pt鄄Ru/C催化剂及这种催化剂对乙醇氧化的电催化性能,发现用固相反应法制备的Pt鄄Ru/C催化剂对乙醇氧...
Resumo:
报道了用循环伏安法研究Eu3+和Ho3+吸附的碳载Pt-TiO2(pt-TiO2/C)催化剂对乙醇电化学氧化的助催化作用.发现无论在中性溶液中还是在酸性溶液中,当Pt-TiO2/C催化剂吸附Eu3+或Ho3+后,都可以使乙醇的电催化氧化电流密度明显增加,其原因主要是Eu3+或Ho3+都能促进吸附的CO的电氧化.
Resumo:
采用固相合成的方法制得直接甲醇燃料电池催化甲醇氧化的Pt/MoO3.XRD分析、循环伏安测试表明,Pt/MoO3对甲醇的氧化具有较好的催化作用,氧化峰电位出现在0.63V(vs.SCE),峰电流密度可达78.1mA·cm-2.
Resumo:
通过Pt和Co羰基簇合物途径制备了碳载Pt Co(Pt Co/C)复合催化剂.其金属粒子的平均粒径小,相对结晶度很低.与商业化的E TEKPt/C催化剂相比,该催化剂具有较好的抗甲醇性能和电催化氧还原活性.
Resumo:
研究了用固相反应法制备的碳载Pt(Pt/C(s) )催化剂对甲酸氧化的电催化活性 .XRD和TEM的测量表明 ,Pt/C(s)催化剂中Pt的平均粒径和结晶度远小于用传统的液相反应法制备的碳载Pt(Pt/C(l) )催化剂 ,因此 ,Pt/C(s)催化剂对甲酸氧化的电催化活性远高于Pt/C(l)催化剂.
Resumo:
It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C catalysts could be controlled with controlling the preparation conditions. The effect of the average sizes of the Pt particles in the Pt/C catalysts obtained with this method on the electrocatalytical activity of the oxidation of methanol was investigated.
Resumo:
In this paper we report the rational design and fabrication of high-quality core-shell Au-Pt nanoparticle film. Such film shows highly efficient catalytic properties and excellent surface-enhanced Raman scattering (SERS) ability.
Resumo:
A simple thermal process for the preparation of small Pt nanoparticles is presented, carried out by heating a H-2-PtCl6/3- thiophenemalonic acid aqueous solution. The following treatment of such colloidal Pt solution with Ru( bpy)(3)(2+) causes the assembly of Pt nanoparticles into aggregates. Most importantly, directly placing such aggregates on bare solid electrode surfaces can produce very stable films exhibiting excellent electrochemiluminescence behaviors.
Resumo:
The poisonous intermediate of methanol oxidation on a Pt electrode was validated to be COad by electrochemical method. An approximate treatment to bimolecular elementary reactions on an electrode was advanced and then was applied to the stripping normal pulse voltammetry (NPV) for complex multistep multielectron transfer processes on plane electrodes to study the kinetics of completely irreversible process Of COad oxidation to CO2. The kinetic parameters for this process, such as standard rate constant (0) and anodic transfer coefficient (alpha) for this irreversible heterogeneous electron-transfer process at electrode/solution interface and apparent diffusion coefficient (D-app) for charge-transfer process within the monolayer of COad on electrode surface, were obtained with stripping NPV method. The effect of the approximate treatment on the kinetic parameters was also analyzed.
Resumo:
A novel method was developed to prepare the highly active Pt-Ru-P/C catalyst. The deposition of phosphorus significantly increased electrochemical active surface (EAS) area of catalyst by reduces Pt-Ru particle size. TEM images show that Pt-Ru-P nanoparticles have an uniform size distribution with an average diameter of 2 nm. Cyclic voltammetry (CV), Chronoamperometry (CA), and CO stripping indicate that the presence of non-metal phosphorus as an interstitial species Pt-Ru-P/C catalyst shows high activity for the electro-oxidation of methanol, and exhibit enhanced performance in the oxidation of carbon monoxide compared with Pt-Ru/C catalyst. At 30 degrees C and pure oxygen was fed to the cathode, the maximum power density of direct methanol fuel cell (DMFC) with Pt-Ru-P/C and Pt-Ru/C catalysts as anode catalysts was 61.5 mW cm(-2) and 36.6 mW cm(-2), respectively. All experimental results indicate that Pt-Ru-P/C catalyst was the optimum anode catalyst for direct methanol fuel cell.