899 resultados para POLYAMIDE BLENDS
Resumo:
Blends of poly(vinylidene fluoride), PVDF, and poly(o-methoxyaniline), POMA doped with toluene sulfonic acid, TSA, were prepared by casting at various compositions and studied by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry. The blend composition has a great influence on the morphology obtained. As the concentration of POMA-TSA is increased in the blend an interconnecting fibrillar-like morphology is formed and the spherulites characteristic of pure PVDF are destroyed. The variation of blend morphology is further discussed based on X-ray diffraction and differential scanning calorimetry analysis. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Flexible and free-standing films from blends of polyurethane, based on castor oil, and polyaniline were obtained with various compositions by casting. Significant increase on conductivity followed by a considerable decrease on doping time was obtained by doping the films in N,N-dimethylformamide (DMF) solution with p-toluene sulphonic acid (TSA) or HCl instead of the conventional doping in aqueous solution. This doping efficiency is proposed to be due to an improved swelling of the blend structure caused by the solvent. The electrical conductivity increases significantly upon polyaniline content increase reaching 10(-2) S/cm for a polyaniline content of about 10% (w/w).
Resumo:
Electrically conductive poly(vinylidene fluoride)(PVDF) - polyaniline blends of different composition were synthesized by chemical polymerization of aniline in a mixture of PVDF and dimethylformamide (DMF) and studied by electrical conductivity measurement, UV-Vis-NIR and FTIR spectroscopy. The samples were obtained as flexible films by pressing the powder at 180 degrees C for 5 min. The electrical conductivity showed a great dependence on the syntheses parameters. The higher value of the electrical conductivity was obtained for the oxidant/aniline molar ratio equal to 1 and p-toluenesulfonic acid-TSA/aniline ratio between 3 and 6. UV-Vis-NIR and FTIR spectra of the blend are similar to the doped PANI, indicating that the PANI is responsible for the high electrical conductivity of the blend. The electrical conductivity of blend proved to be stable as a function of temperature decreasing about one order at temperature of 100 degrees C. The route used to obtain the polymer blend showed to be a suitable alternative in order to obtain PVDF/PANI-TSA blends with high electrical conductivity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Films made from a blend of poly(epsilon-caprolactone) and poly(vinyl chloride) (PCL/PVC) retained high crystallinity in a segregated PCL phase. Structural and morphological changes produced when the films were exposed to high potency ultraviolet (UV) irradiation for 10 h were measured by UV-Vis spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). They were different to those observed with homopolymer PCL and PVC films treated under the same conditions. The FTIR spectra of the PCL/PVC blend suggest that blending decreased the susceptibility of the PCL to crystallize when irradiated. Similarly, although scanning electron micrographs of PCL showed evidence of growth of crystalline domains, particularly after UV irradiation, the images of PCL/PVC were fairly featureless. It is apparent that the degradation behavior is strongly influenced by the interaction of the two polymers in the amorphous phase.
Resumo:
This work aimed to assess the aerobic biodegradation of butanol/gasoline, blends (5; 10; 15 and 20% v/v), being the latter compared to the ethanol/gasoline blend (20% v/v). Two experimental techniques were employed, namely the respirometric method and the redox indicator DCPIP test. in the former, experiments simulating the contamination of natural environments (addition of 50 mL of fuel kg(-1) of soil from a non-contaminated site and 20 mL of fuel L(-1) of water from a river) were carried out in biometer flasks (250 mL), used to measure the microbial CO(2) production. The DCPIP test assessed the capability of four inocula to biodegrade the blends of 20%. The addition of butanol at different concentrations enhanced the biodegradation of gasoline in soil. However, no practical gains were observed for concentrations of butanol above 10%. Ethanol showed to have a much faster biodegradation rate than butanol, particularly in water, and the following order of biodegradability was found: ethanol > butanol > gasoline. The addition of the alcohols to the gasoline resulted in positive synergic effects on the biodegradation of the fuels in soil and water matrices. Furthermore, results suggest that, in soil, butanol better enhanced the biodegradation of gasoline than ethanol. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
This work is aimed to assess the aerobic biodegradation of biodiesel/diesel blends (0, 2, 5, 20 and 100%, v/v) by Candida viswanathii. The biodegradation potential of the inoculum was assessed with the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test and with respirometric experiment in biometer flasks (250 mL) used to measure the microbial CO(2) production. In the latter, the inoculum was added to a contaminated soil with the blends (addition of 50 mL of fuel/Kg of soil from a non-contaminated site). C. viswanathii was able to increase significantly (approximately 50% in terms of CO(2) production) the biodegradation in soil of biodiesel/diesel blends and neat biodiesel since it preferable biodegrades biodiesel. Without inoculum the biodegradation of diesel oil was higher than biodiesel and blends (47.3, 51.1, 5.7 and 22.1% in terms of CO(2) production by B2, B5, B20 and B100, respectively) presumably due to the presence of the antioxidant terc-butyl-hydroquinone (TBHQ) in the biodiesel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)