997 resultados para PLANT SCIENCES
Resumo:
High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.
Resumo:
Premise of the study: Microsatellite loci were developed in Sebaea aurea (Gentianaceae) to investigate the functional role of diplostigmaty (i.e., the presence of additional stigmas along the style). Methods and Results: One hundred seventy-four and 180 microsatellite loci were isolated through 454 shotgun sequencing of genomic and microsatellite-enriched DNA libraries, respectively. Sixteen polymorphic microsatellite loci were characterized, and 12 of them were selected to genotype individuals from two populations. Microsatellite amplification was conducted in two multiplex groups, each containing six microsatellite loci. Cross-species amplification was tested in seven other species of Sebaea. The 12 novel microsatellite loci amplified only in the two most closely related species to S. aurea (i.e., S. ambigua and S. minutiflora) and were also polymorphic in these two species. Conclusions: These results demonstrate the usefulness of this set of newly developed microsatellite loci to investigate the mating system and population genetic structure in S. aurea and related species.
Resumo:
Plants naturally synthesize a variety of polymers that have been used by mankind as a source of useful biomaterials. For example, cellulose, the main constituent of plant cell wall and the most abundant polymer on earth, has been used for several thousand years as a source of fibers for various fabrics. Similarly, rubber extracted from the bark of the tree Hevea brasiliensis, has been a major source of elastomers until the development of similar synthetic polymers. In the last century, the usefulness of plant polymers as biomaterials has been expanded through the chemical modification of the natural polymers. For example, a number of plastics have been made by substituting the hydroxyl groups present on the glucose moiety of cellulose with larger groups, such as nitrate or acetate, giving rise to materials such as cellulose acetate, a clear plastic used in consumer products such as toothbrush handles and combs. Similarly, starch has been used in the manufacture of plastics by either using it in blends with synthetic polymers or as the main constituent in biodegradable plastics. The advent of transformation and expres- sion of foreign genes in plants has created the possibility of expanding the usefulness of plants to include the synthesis of a range of biomolecules. In view of the capacity of certain crops to produce a large quantity of organic raw material at low cost, such as oils and starch, it is of interest to explore the possibility of using transgenic plants as efficient vectors for the synthesis of biopolymers. Such plant based biopolymers could replace, in part, the synthetic plastics and elastomers produced from petroleum, offering the advantage of renewability and sustainability. Furthermore, being natural pro- ducts, biopolymers are usually biodegradable and can thus contribute to alleviate problems associated with the management of plastic waste. In this article, the emphasis will be on the use of transgenic plants for the synthesis of two novel classes of industrially useful polymers, namely protein based polymers made from natural or artificial genes, and polyhydroxyalkanoates, a family of bacterial poly- esters having the properties of biodegradable plastics and elastomers.
Resumo:
Gender-dimorphic species often display a degree of sexual dimorphism in terms of life-history traits, yet little is known about dimorphism in androdioecious plants. Here we investigate sexual dimorphism in an androdioecious population of the wind-pollinated herb Mercurialis annua by comparing the resource allocation strategies of males and hermaphrodites grown under different nutrient-availability and competitive regimes. We found that males displayed smaller aboveground vegetative sizes than did hermaphrodites, but neither soil nutrient availability nor competition had a strong independent effect on their relative sizes. Plants adjusted their relative reproductive investment in response to nutrient availability. Specifically, hermaphrodites increased their reproductive allocation when growing in poor soils, whereas males displayed the opposite response. Finally, hermaphrodites were strongly female biased in their sex allocation, and this was more pronounced in nutrient-poor soils. To conclude, sexual dimorphism in androdioecious M. annua shares many features with dioecious and gynodioecious species, particularly wind-pollinated herbs. However, the direction of sex-allocation reaction norms displayed by hermaphrodites of M. annua differs from that documented for several insect-pollinated gynodioecious species, hinting at the importance of either the pollination mode or the sexual system as a context of selection shaping the reproductive strategy of plants with both male and female functions.
Resumo:
Rio +20, or the United Nations Conference for Sustainable Development, will take place at the end of this month of June 2012. In this paper, our central argument is that Brazil, as the host of Rio+20, has a historic opportunity to make the conference a success and take a decisive step in becoming a world leader in the shift from the traditional development paradigm to a new, sustainable development paradigm. To do that, Brazil will have to resolve a paradox: on the one hand the country has modern legislation and world class science, and on the other hand very poor social and environmental decision-making in recent times. In this column, we examine the green economy as a trajectory that leads to sustainable development and describe some pilot experiences at the sub-national level in Brazil. We discuss how science, and particularly plant sciences, will be essential to the transition to sustainable development. Finally, we propose immediate actions that we call upon the Brazilian government to commit to and to announce during this pivotal Rio+20 moment, which should serve as a milestone for all nations in building a sustainable future.
Resumo:
• Premise of the study: Polymorphic microsatellite markers were developed in Vinca minor (Apocynaceae) to evaluate the level of clonality, population structure, and genetic diversity of the species within its native and introduced range. • Methods and Results: A total of 1371 microsatellites were found in 43,565 reads from 454 pyrosequencing of genomic V. minor DNA. Additional microsatellite loci were mined from publicly available cDNA sequences. After several rounds of screening, 18 primer pairs flanking di-, tri-, or tetranucleotide repeats were identified that revealed high levels of genetic diversity in two native Italian populations, with two to 11 alleles per locus. Clonal growth predominated in two populations from the introduced range in Germany. Five loci successfully cross-amplified in three additional Vinca species. • Conclusions: The novel polymorphic microsatellite markers are promising tools for studying clonality and population genetics of V. minor and for assessing the historical origin of Central European populations.
Resumo:
• Premise of the study: Microsatellite markers were developed in Fosterella christophii (Bromeliaceae) to investigate the genetic diversity and population structure within the F. micrantha group, comprising F. christophii, F. micrantha, and F. villosula. • Methods and Results: Full-length cDNAs were isolated from F. christophii and sequenced on a Pacific Biosciences RS platform. A total of 1590 high-quality consensus isoforms were assembled into 971 unigenes containing 421 perfect microsatellites. Thirty primer sets were designed, of which 13 revealed a high level of polymorphism in three populations of F. christophii, with four to nine alleles per locus. Each of these 13 loci cross-amplified in the closely related species F. micrantha and F. villosula, with one to six and one to 11 alleles per locus, respectively. • Conclusions: The new markers are promising tools to study the population genetics of F. christophii and to discover species boundaries within the F. micrantha group.
Resumo:
This review evaluates evidence of the impact of uncomposted plant residues, composts, manures, and liquid preparations made from composts (compost extracts and teas) on pest and disease incidence and severity in agricultural and horticultural crop production. Most reports on pest control using such organic amendments relate to tropical or and climates. The majority of recent work on the use of organic amendments for prevention and control of diseases relates to container-produced plants, particularly ornamentals. However, there is growing interest in the potential for using composts to prevent and control diseases in temperate agricultural and horticultural field crops and information concerning their use and effectiveness is slowly increasing. The impact of uncomposted plant residues, composts, manures, and compost extracts/teas on pests and diseases is discussed in relation to sustainable temperate field and protected cropping systems. The factors affecting efficacy or such organic amendments in preventing and controlling pests and disease are examined and the mechanisms through which control is achieved are described.
Resumo:
Germin and germin-like proteins (GLPs) are encoded by a family of genes found in all plants. They are part of the cupin superfamily of biochemically diverse proteins, a superfamily that has a conserved tertiary structure, though with limited similarity in primary sequence. The subgroups of GLPs have different enzyme functions that include the two hydrogen peroxide-generating enzymes, oxalate oxidase (OxO) and superoxide dismutase. This review summarizes the sequence and structural details of GLPs and also discusses their evolutionary progression, particularly their amplification in gene number during the evolution of the land plants. In terms of function, the GLPs are known to be differentially expressed during specific periods of plant growth and development, a pattern of evolutionary subfunctionalization. They are also implicated in the response of plants to biotic (viruses, bacteria, mycorrhizae, fungi, insects, nematodes, and parasitic plants) and abiotic (salt, heat/cold, drought, nutrient, and metal) stress. Most detailed data come from studies of fungal pathogenesis in cereals. This involvement with the protection of plants from environmental stress of various types has led to numerous plant breeding studies that have found links between GLPs and QTLs for disease and stress resistance. In addition the OxO enzyme has considerable commercial significance, based principally on its use in the medical diagnosis of oxalate concentration in plasma and urine. Finally, this review provides information on the nutritional importance of these proteins in the human diet, as several members are known to be allergenic, a feature related to their thermal stability and evolutionary connection to the seed storage proteins, also members of the cupin superfamily.
Resumo:
The genus Capsicum has 20-30 species, of which only a few are cultivated. Capsicum annuum L. is the best known Capsicum all around the world, while the other species are not common outside Latin America. Since it is the best known and commercially the most valuable species, many breeding programs have been conducted on C annuum L., especially on the non-pungent vegetable types. Breeding of other species has received less attention. Therefore, this work was conducted on two species other than C. annuum that are rarely studied-C. baccatum and C. cardenasii. Other results concern linkage groups and association of the marker genes or linkage groups with the chromosomes involved in an interchange. Linkage was detected for two pairs of genes only; these were between Got-1 and Idh-1, and between Pgi-2 and Est-5. No gene was found to show a statistically significant association with chromosomes with interchanged segments.
Resumo:
The release of genetically modified plants is governed by regulations that aim to provide an assessment of potential impact on the environment. One of the most important components of this risk assessment is an evaluation of the probability of gene flow. In this review, we provide an overview of the current literature on gene flow from transgenic plants, providing a framework of issues for those considering the release of a transgenic plant into the environment. For some plants gene flow from transgenic crops is well documented, and this information is discussed in detail in this review. Mechanisms of gene flow vary from plant species to plant species and range from the possibility of asexual propagation, short- or long-distance pollen dispersal mediated by insects or wind and seed dispersal. Volunteer populations of transgenic plants may occur where seed is inadvertently spread during harvest or commercial distribution. If there are wild populations related to the transgenic crop then hybridization and eventually introgression in the wild may occur, as it has for herbicide resistant transgenic oilseed rape (Brassica napus). Tools to measure the amount of gene flow, experimental data measuring the distance of pollen dispersal, and experiments measuring hybridization and seed survivability are discussed in this review. The various methods that have been proposed to prevent gene flow from genetically modified plants are also described. The current "transgenic traits'! in the major crops confer resistance to herbicides and certain insects. Such traits could confer a selective advantage (an increase in fitness) in wild plant populations in some circumstances, were gene flow to occur. However, there is ample evidence that gene flow from crops to related wild species occurred before the development of transgenic crops and this should be taken into account in the risk assessment process.
Resumo:
In this paper, I address the "wider issues Both That Affect Floristic studies today and how They Are Likely to Develop in the Future, And The Problems That special concern in the Mediterranean region particularism. A survey of published floristic studies is given for the Mediterranean and the Middle East, and the desirability of applying electronic web-based preparation and publication of floristic and taxonomic projects is considered, with special reference to the Euro + Med PlantBase project. A Survey of Published Studies Floristic IS Given for the Mediterranean and the Middle East, and the Desirability of Applying web-based electronic preparation and publication of Floristic and Taxonomic Project is regarded, with Special Reference To The Euro + Med project PlantBase. A new paradigm for taxonomy, and a plan of action for Mediterranean floristic studies are proposed. A New Paradigm for taxonomy, and a plan of action for Mediterranean Floristic studies are Proposed.