948 resultados para PHASE PROBE MOLECULES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite–potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO3, KCO3 and KAlSiO4, which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300 °C, and the thermal decomposition products (H2O and CO2) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lamellar pathology in experimentally-induced equine laminitis associated with euglycaemic hyperinsulinaemia is substantial by the acute, clinical phase (∼48 h post-induction). However, lamellar pathology of the developmental, pre-clinical phase requires evaluation. The aim of this study was to analyse lamellar lesions both qualitatively and quantitatively, 6, 12 and 24 h after the commencement of hyperinsulinaemia. Histological and histomorphometrical analyses of lamellar pathology at each time-point included assessment of lamellar length and width, epidermal cell proliferation and death, basement membrane (BM) pathology and leucocyte infiltration. Archived lamellar tissue from control horses and those with acute, insulin-induced laminitis (48 h) was also assessed for cellular proliferative activity by counting the number of cells showing positive nuclear immuno labelling for TPX2. Decreased secondary epidermal lamellar (SEL) width and increased histomorphological evidence of SEL epidermal basal (and supra-basal) cell death occurred early in disease progression (6 h). Increased cellular proliferation in SELs, infiltration of the dermis with small numbers of leucocytes and BM damage occurred later (24 and 48 h). Some lesions, such as narrowing of the SELs, were progressive over this time period (6–48 h). Cellular pathology preceded leucocyte infiltration and BM pathology, indicating that the latter changes may be secondary or downstream events in hyperinsulinaemic laminitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 ◦C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the influence of interpersonal coordination tendencies on performance outcomes of 1-vs-1 subphases in youth soccer. Eight male developing soccer players (age: 11.8+0.4 years; training experience: 3.6+1.1 years) performed an in situ simulation of a 1-vs-1 sub-phase of soccer. Data from 82 trials were obtained with motion-analysis techniques, and relative phase used to measure the space-time coordination tendencies of attacker-defender dyads. Approximate entropy (ApEn) was then used to quantify the unpredictability of interpersonal interactions over trials. Results revealed how different modes of interpersonal coordination emerging from attacker-defender dyads influenced the 1-vs-1 performance outcomes. High levels of space-time synchronisation (47%) and unpredictability in interpersonal coordination processes (ApEn: 0.91+0.34) were identified as key features of an attacking player’s success. A lead-lag relation attributed to a defending player (34% around 7308 values) and a more predictable coordination mode (ApEn: 0.65+0.27, P50.001), demonstrated the coordination tendencies underlying the success of defending players in 1-vs-1 sub-phases. These findings revealed how the mutual influence of each player on the behaviour of dyadic systems shaped emergent performance outcomes. More specifically, the findings showed that attacking players should be constrained to exploit the space-time synchrony with defenders in an unpredictable and creative way, while defenders should be encouraged to adopt postures and behaviours that actively constrain the attacker’s actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A profluorescent nitroxide was used to evaluate the oxidative potential of pollution derived from a compression ignition engine fuelled with biodiesel. The reaction products responsible for the observed fluorescence increase when a DMSO solution of nitroxide was exposed to biodiesel exhaust were determined by using HPLC/MS. The main fluorescent species was identified as a methanesulfonamide adduct arising from the reaction of the nitroxide with DMSO-derived sulfoxyl radicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To recognize faces in video, face appearances have been widely modeled as piece-wise local linear models which linearly approximate the smooth yet non-linear low dimensional face appearance manifolds. The choice of representations of the local models is crucial. Most of the existing methods learn each local model individually meaning that they only anticipate variations within each class. In this work, we propose to represent local models as Gaussian distributions which are learned simultaneously using the heteroscedastic probabilistic linear discriminant analysis (PLDA). Each gallery video is therefore represented as a collection of such distributions. With the PLDA, not only the within-class variations are estimated during the training, the separability between classes is also maximized leading to an improved discrimination. The heteroscedastic PLDA itself is adapted from the standard PLDA to approximate face appearance manifolds more accurately. Instead of assuming a single global within-class covariance, the heteroscedastic PLDA learns different within-class covariances specific to each local model. In the recognition phase, a probe video is matched against gallery samples through the fusion of point-to-model distances. Experiments on the Honda and MoBo datasets have shown the merit of the proposed method which achieves better performance than the state-of-the-art technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone for the assessment of osteoporosis follows a parabolic-type dependence with bone volume fraction; having minima values corresponding to both entire bone and entire marrow. Langton has recently proposed that the primary BUA mechanism may be significant phase interference due to variations in propagation transit time through the test sample as detected over the phase-sensitive surface of the receive ultrasound transducer. This fundamentally simple concept assumes that the propagation of ultrasound through a complex solid : liquid composite sample such as cancellous bone may be considered by an array of parallel ‘sonic rays’. The transit time of each ray is defined by the proportion of bone and marrow propagated, being a minimum (tmin) solely through bone and a maximum (tmax) solely through marrow. A Transit Time Spectrum (TTS), ranging from tmin to tmax, may be defined describing the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit time over the surface of the receive ultrasound transducer. Phase interference may result from interaction of ‘sonic rays’ of differing transit times. The aim of this study was to test the hypothesis that there is a dependence of phase interference upon the lateral inhomogenity of transit time by comparing experimental measurements and computer simulation predictions of ultrasound propagation through a range of relatively simplistic solid:liquid models exhibiting a range of lateral inhomogeneities. Methods: A range of test models was manufactured using acrylic and water as surrogates for bone and marrow respectively. The models varied in thickness in one dimension normal to the direction of propagation, hence exhibiting a range of transit time lateral inhomogeneities, ranging from minimal (single transit time) to maximal (wedge; ultimately the limiting case where each sonic ray has a unique transit time). For the experimental component of the study, two unfocused 1 MHz ¾” broadband diameter transducers were utilized in transmission mode; ultrasound signals were recorded for each of the models. The computer simulation was performed with Matlab, where the transit time and relative amplitude of each sonic ray was calculated. The transit time for each sonic ray was defined as the sum of transit times through acrylic and water components. The relative amplitude considered the reception area for each sonic ray along with absorption in the acrylic. To replicate phase-sensitive detection, all sonic rays were summed and the output signal plotted in comparison with the experimentally derived output signal. Results: From qualtitative and quantitative comparison of the experimental and computer simulation results, there is an extremely high degree of agreement of 94.2% to 99.0% between the two approaches, supporting the concept that propagation of an ultrasound wave, for the models considered, may be approximated by a parallel sonic ray model where the transit time of each ray is defined by the proportion of ‘bone’ and ‘marrow’. Conclusions: This combined experimental and computer simulation study has successfully demonstrated that lateral inhomogeneity of transit time has significant potential for phase interference to occur if a phase-sensitive ultrasound receive transducer is implemented as in most commercial ultrasound bone analysis devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This extended abstract summarizes the state-of-the-art solution to the structuring problem for models that describe existing real world or envisioned processes. Special attention is devoted to models that allow for the true concurrency semantics. Given a model of a process, the structuring problem deals with answering the question of whether there exists another model that describes the process and is solely composed of structured patterns, such as sequence, selection, option for simultaneous execution, and iteration. Methods and techniques for structuring developed by academia as well as products and standards proposed by industry are discussed. Expectations and recommendations on the future advancements of the structuring problem are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing community concerns about the ecological, social, cultural and economic impact of housing and urban projects poses new challenges for those who have to deliver them. It is important that these concerns are addressed as part of the community engagement processes on projects. Community engagement is traditionally perceived as the purview of planners and disconnected from the building construction process. This is despite most project approval processes mandating on-going community engagement over the project’s entire lifetime. There is evidence that point to a culture of ambiguity and ambivalence among building professionals about their roles, responsibilities and expectations of community engagement during the construction phase of projects. This has contributed to a culture of distrust between communities and the construction industry. There is a clear need to build capacity among building professionals to empower them as active participants in community engagement processes which can promote better project outcomes and minimise delays and conflicts. This paper describes a process that utilises the Theory of Planned Behaviour as a framework to equip building professionals with the skills they need to engage effectively with local communities during the construction phase of projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of hydronium jarosite and ammoniojarosite was studied using thermogravimetric analysis and mass spectrometry, in situ synchrotron X-ray diffraction and infrared emission spectroscopy. There was no evidence for the simultaneous loss of water and sulfur dioxide during the desulfonation stage as has previously been reported for hydronium jarosite. Conversely, all hydrogen atoms are lost during the dehydration and dehydroxylation stage from 270 to 400 °C and no water, hydroxyl groups or hydronium ions persist after 400 °C. The same can be said for ammoniojarosite. The first mass loss step during the decomposition of hydronium jarosite has been assigned to the loss of the hydronium ion via protonation of the surrounding hydroxyl groups to evolve two water molecules. For ammoniojarosite, this step corresponds to the protonation of a hydroxyl group by ammonium, so that ammonia and water are liberated simultaneously. Iron(II) sulfate was identified as a possible intermediate during the decomposition of ammoniojarosite (421–521 °C) due to a redox reaction between iron(III) and the liberated ammonia during decomposition. Iron(II) ions were also confirmed with the 1,10-phenanthroline test. Iron(III) sulfate and other commonly suggested intermediates for hydronium and ammoniojarosite decomposition are not major crystalline phases; if they are formed, then they most likely exist as an amorphous phase or a different low temperature phases than usual.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact induced chemisorption of hydrocarbon molecules (CH3 and CH2) on H-terminated diamond (001)-(2x1) surface was investigated by molecular dynamics simulation using the many-body Brenner potential. The deposition dynamics of the CH3 radical at impact energies of 0.1-50 eV per molecule was studied and the energy threshold for chemisorption was calculated. The impact-induced decomposition of hydrogen atoms and the dimer opening mechanism on the surface was investigated. Furthermore, the probability for dimer opening event induced by chemisorption of CH, was simulated by randomly varying the impact position as well as the orientation of the molecule relative to the surface. Finally, the energetic hydrocarbons were modeled, slowing down one after the other to simulate the initial fabrication of diamond-like carbon (DLC) films. The structure characteristic in synthesized films with different hydrogen flux was studied. Our results indicate that CH3, CH2 and H are highly reactive and important species in diamond growth. Especially, the fraction of C-atoms in the film having sp(3) hybridization will be enhanced in the presence of H atoms, which is in good agreement with experimental observations. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residual amplitude modulation (RAM) is an unwanted noise source in electro-optic phase modulators. The analysis presented shows that while the magnitude of the RAM produced by a MgO:LiNbO3 modulator increases with intensity, its associated phase becomes less well defined. This combination results in temporal fluctuations in RAM that increase with intensity. This behaviour is explained by the presented phenomenological model based on gradually evolving photorefractive scattering centres randomly distributed throughout the optically thick medium. This understanding is exploited to show that RAM can be reduced to below the 10-5 level by introducing an intense optical beam to erase the photorefractive scatter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700–775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm−1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm−1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm−1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed mechanisms for the formation of hydroxyl or alkoxyl radicals in the reactions between tetrachloro-p-benzoquinone (TCBQ) and organic hydroperoxides are crucial for better understanding the potential carcinogenicity of polyhalogenated quinones. Herein, the mechanism of the reaction between TCBQ and H2O2 has been systematically investigated at the B3LYP/6-311++G** level of theory in the presence of different numbers of water molecules. We report that the whole reaction can easily take place with the assistance of explicit water molecules. Namely, an initial intermediate is formed first. After that, a nucleophilic attack of H2O2 onto TCBQ occurs, which results in the formation of a second intermediate that contains an OOH group. Subsequently, this second intermediate decomposes homolytically through cleavage of the O-O bond to produce a hydroxyl radical. Energy analyses suggest that the nucleophilic attack is the rate-determining step in the whole reaction. The participation of explicit water molecules promotes the reaction significantly, which can be used to explain the experimental phenomena. In addition, the effects of F, Br, and CH3 substituents on this reaction have also been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FTIR spectra are reported of methanol adsorbed at 295 K on ZnO/SiO 2, on reduced Cu/ZnO/SiO2 and on Cu/ZnO/SiO2 which had been preoxidised by exposure to nitrous oxide. Methanol on ZnO/SiO2 gave methoxy species on ZnO and SiO, in addition to both strongly and weakly physisorbed methanol on SiO2. The corresponding adsorption of methanol on reduced Cu/ZnO/SiO2 also gave methoxy species on Cu and a small amount of bridging formate. Reaction of methanol with a reoxidised Cu/ZnO/SiO2 catalyst resulted in an enhanced quantity of methoxy species on Cu. Heating adsorbed species on Cu/ZnO/SiO2 at 393 K led to the loss of methoxy groups on Cu and the concomitant formation of formate species on both ZnO and Cu. The comparable reaction on a reoxidised Cu/ZnO/SiO2 catalyst gave an increased amount of formate species on ZnO and this correlated with an increased quantity of methoxy groups lost from Cu. An explanation is given in terms of adsorption of formate and formaldehyde species at special sites located at the copper/zinc oxide interface.