907 resultados para PESTICIDE
Resumo:
Injection metering systems are an important option for the development of pesticide application equipment, with advantages relating to minimising the need for disposal of unused pesticide, improving the ease of cleaning and optimising the accuracy of chemical application. For all injection systems, characteristics such as the steady-state accuracy of delivered dose, dose stability and the time response for dose step changes are related to the ability of the system to operate with different chemical formulations. A system designed to inject liquids should be able to accommodate changes in viscosity and density. The aim of this study was to develop a methodology for testing chemical injection systems using liquids with different viscosities. The experimental arrangement simulating applications with injection metering systems used dye and salt solutions as tracers. Tests were conducted to analyse the influence of salt on the characteristics of the water and a viscous solution. Results showed that the salt interfered with the dye stability in the water solution. In tests with a viscous test liquid, the salt was introduced at different steps during the mixing process, providing four different liquids to be analysed in terms of viscosity, density and pH. Some differences in liquid characteristics were found which could influence the performance of the injection systems.
Resumo:
An amperometric biosensor based on cholinesterase (ChE) has been used for the determination of selected carbamate insecticides in vegetable samples. The linear range of the biosensor for the N-methylcarbamates (aldicarb, carbaryl, carbofuran, methomyl and propoxur) varied from 5 x 10(-5) to 50 mg kg(-1). Limits of detection were calculated on the basis that the ChE enzymes were 10% inhibited and varied, depending of the combination ChE (as acetyl- or butyrylcholinesterase) vs. inhibitor (pesticide), from 1 x 10(-4) to 3.5 mg kg(-1). The biosensor-based carbamate determination was compared to liquid chromatography/UV methods. Three vegetable samples were spiked with carbofuran and propoxur at 125 mu g kg(-1) followed by conventional procedures. Good correlations were observed for carbofuran in the vegetable extracts (79, 96 and 91% recoveries for potato, carrot and sweet pepper, respectively), whereas for propoxur unsatisfactory results were obtained. Potato and carrot samples were spiked with 10, 50 and 125 mu g kg(-1) carbofuran, followed by direct determination by the amperometric biosensor. The fortified sampler; resulted in very high inhibition values, and recoveries were: 28, 34 and 99% for potato, and 140, 90 and 101% for carrot, respectively, at these three fortification levels. (C) 1998 Elsevier B.V. B.V.
Resumo:
Humic acids (HAs), naturally occurring biomacromolecules, were incorporated into nanostructured polymeric films using the layer-by-layer (LbL) technique, in which HA layers were alternated with layers of poly(allylamine hydrochloride) (PAH). Atomic force microscopy (AFM) revealed very smooth films, with mean roughness varying from 0.89 to 1.19 nm for films containing 5 and 15 PAH/HA bilayers, respectively. The films displayed electroactivity, with the presence of only one reduction peak at ca. 0.675 V (vs Ag/AgCl). Such a well-defined electroactivity allowed the films to be used as highly sensitive pesticide sensors, with detection of pentachlorophenol (PCP) in solutions at concentrations as low as 10(-9) mol L(-1).
Resumo:
After treatment lipophilic pesticides tend to diffuse by penetrating the epicuticular wax of fruits. In this way, solar radiation only acts on pesticide molecules after passing through the waxes. The effect of epicuticular waxes of three fruits (orange, nectarine, and olive) on the photodegradation of fenthion was studied. The waxes affected the photodegradation process of fenthion. The decay rate of fenthion increased in the presence of orange and nectarine waxes, while it decreased when olive wax was used. In all waxes, the transformation of fenthion produced mainly fenthion sulfoxide and low amounts of fenthion sulfone. In orange wax, 50% of the initial fenthion was transformed into unknown compounds. In nectarine wax, fenthion was degraded stoichiometrically into fenthion sulfoxide and fenthion sulfone. In olive wax, the photodegradation of fenthion yielded about 80% of fenthion sulfoxide.
Resumo:
The effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on the central nervous system (CNS) were studied in rats. Behavioural and neurochemical studies were performed. Results show that acute and oral administration of dimethylamine 2,4-D was able to decrease locomotion and rearing frequencies and to increase immobility duration of rats observed in an open-field test. Treatment of rats with p-chlorophenylalanine (PCPA) was unable to change rat's open-field behaviour; 5-hydroxytryptophan (5-HTP) administration not only increased locomotion and rearing frequences but also decreased immobility duration. Pretreatment of the rats with PCPA and 5-HTP decreased and increased dimethylamine 2,4-D effects, respectively. The herbicide was not able to change the striatal levels of dopamine and homovanilic acid but decreased the striatal levels of serotonin (5-HT), as observed for the doses of 100 and 200 mg/kg and increased those of 5-hydroxyindoleacetic acid (5-HIAA) as measured after the 200 mg/kg dose treatment. When the levels of serotonin and 5-HIAA were measured at the brain stem level, only those of 5-HIAA were modified, being increased by diethylamine 2,4-D (60; 100 and 200 mg/kg); this increment on 5-HIAA levels was observed even 1 hr after pesticide administration. Further analysis showed that 2,4-D concentrations chromatographycally detected both in serum and brain of the intoxicated animals were dose-dependent, being found as early as 1 hr after the smaller dose of the herbicide used (10 mg/kg). The results suggest that diethylamine 2,4-D modify 5-HT functional activity within the CNS. Thus, the effects of the herbicide on open-field behaviour of rats could be attributed to a direct or indirect pesticide action on serotoninergic systems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effects of prenatal exposure of rat pups to 0.08 mg/kg deltamethrin (DTM) on physical, reflex and behavioral developmental parameters, on forced swimming and open-field behaviors, and on striatal monoamine levels at 60 days of age were observed. Maternal and offspring body weight, physical and reflex development were unaffected by the exposure to the pesticide. At 21 days of age, open-field locomotion frequency and immobility duration of male and female offspring were not different between control and exposed animals. However, male rearing frequency was increased in experimental animals. A decreased immobility latency to float and in general activity after the swimming test in male offspring was observed at adult age; no interference was detected in the float duration during the swimming test. In addition, these animals presented higher striatal 3,4-dihydroxyphenylacetic acid (DOPAC) levels without modification in dopamine (DA) levels and an increased DOPAC/DA ratio. These data indicate a higher activity of the dopaminergic system in these animals. Noradrenaline (NA) levels were increased, while MHPG levels were not detectable in the system studied. Serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) levels, as well as the homovanillic acid (HVA)/DA ratio, were not modified by the exposure to the pesticide. No changes were observed in swimming and open-field behaviors nor were there any changes in striatal monoamines or their metabolites in the female experimental group. In relation to the pesticide formula, the present data showing that prenatal exposure to DTM alters latency to float and the activity of striatal dopaminergic system might reflect a persistent effect of the pesticide on animal motor activity, mainly in males. on the other hand, the decrease in general activity observed in experimental male rats suggests higher levels of emotionality induced by previous exposure to the swimming behavior test in relation to control animals. Data gathered in the present study may be important for the assessment of the safety of pyrethroid insecticides. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Photosynthesis is the single most important source of 02 and organic chemical energy necessary to support all non-autotrophic life forms. Plants compartmentalize this elaborate biochemical process within chloroplasts in order to safely harness the power of solar energy and convert it into usable chemical units. Stresses (biotic or abiotic) that challenge the integrity of the plant cell are likely to affect photosynthesis and alter chlorophyll fluorescence. A simple three-step assay was developed to test selected herbicides representative of the known herbicide mechanisms of action and a number of natural phytotoxins to determine their effect on photosynthesis as measured by chlorophyll fluorescence. The most active compounds were those interacting directly with photosynthesis (inhibitors of photosystem I and II), those inhibiting carotenoid synthesis, and those with mechanisms of action generating reactive oxygen species and lipid peroxidation (uncouplers and inhibitors of protoporphyrinogen oxidase). Other active compounds targeted lipids (very-long-chain fatty acid synthase and removal of cuticular waxes). Therefore, induced chlorophyll fluorescence is a good biomarker to help identify certain herbicide modes of action and their dependence on light for bioactivity. Published by Elsevier B.V.
Resumo:
Atrazine is the triazinic herbicide most found in the rural aquatic environments due to its extensive use and its stability in such places. The mutagenicity and the genotoxicity of different concentrations of the Atrazine herbicide were determinated by the micronucleus test and the comet assay, using Oreochromis niloticus as test-system. The tested concentrations of Atrazine herbicide were 6.25, 12.5 and 25 mu g/L, both for the micronuclei test and for the comet assay. The results showed a significant rate of micronuclei and nuclear abnormalities for all the tested concentrations of Atrazine herbicide. For the comet assay, we also observed results significantly different from the control in 6.25, 12.5 and 25 mu g/L concentrations. Due to these results, we could infer that such herbicide may be dangerous to the lives of those organisms exposed to it. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effects of fipronil (Frontline (R) Top Spot) were investigated in 40 days old rats utilizing open field (OF), hole-board (HB) and elevated plus-maze (EPM) apparatus. Rats (N=15) received topical application of fipronil (70, 140 and 280 mg/kg) in the neck region and behavior was tested 3 h after administration. Animals treated with corn oil (vehicle) were used as controls. In the of test animals treated with fipronil at 140 mg/kg showed increased rearing, whereas animals exposed to 280 mg/kg showed increased freezing, grooming, and rearing. In the HB test fipronil at 280 mg/kg increased head-dip and head-dipping behaviors. In the EPM test the only observed effect was increased number of entries in both open and closed EPM arms in animals treated with 280 mg/kg. In conclusion, dermal exposure to fipronil causes effects related to emotionality, fear, and exploratory activity; results add strength to the growing concern that pirazole insecticides can be neurotoxic to humans. Published by Elsevier B.V.
Resumo:
Toxic effects of phytosanitary surfactants for jewel tetra (Hyphessobrycon eques). Surfactants are amphipatic molecules that reduce the surface tension of water and make up the inert components of pesticide formulations. Thus, the objectives of this study were: to estimate the lethal concentration (LC(I)50;96h); classify and evaluate water quality during testing of the following surfactants: Agral[registered trademark], Aterbane[registered trademark]BR, Ag-bem[registered trademark], Energic[registered trademark], Fixade[registered trademark] and Gotafix[registered trademark] for jewel tetra (Hyphessobrycon eques); and the signs of intoxication in the animals. For this, the fish were acclimated for ten days in the bioassay room. The animals were exposed to the surfactants in an entirely randomized design with three replications. The LC(I)(50;96h) of surfactant Agral[registered trademark] was 3.29 mg L-1; Aterbane[registered trademark] BR 8.21 mg L-1; Energic[registered trademark] 2.34 mg L-1; Gotafix[registered trademark] 4.37 mg L-1; Fixade[registered trademark] 3.38 mg L-1; and Ag-bem[registered trademark] 34.95 mg L-1. The variables of water quality were unchanged. The fish showed an increase in the opercular beating after exposure; 4 and 24 hours, loss of gasping ability; 48 hours, slow opercular beating; and 72 and 96 hours later, recovery. The surfactants Energic[registered trademark], Agral[registered trademark], Gotafix[registered trademark], Aterbane[registered trademark] BR and Fixade[registered trademark] can be classified as moderately toxics, and Ag-Bem[registered trademark] as slightly toxic for H. eques; this organism shows similar intoxication signs for all surfactants.
Resumo:
The modernization process has been introduced in the agricultural sector without any technical control. This process has provoked loss of food quality, serious damage to the worker's health and environmental degradation. The lack of technical assistance is total and farmers are not interested in the hazards involved. -after English summary