919 resultados para PEPTIDES
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Given the spread of antibiotic resistance in bacterial pathogens, antimicrobial peptides that can also modulate the immune response may be a novel approach for effectively controlling periodontal infections. In the present study, we used a three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) to investigate the anti-inflammatory properties of human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) and to determine whether these antimicrobial peptides can act in synergy. The 3D co-culture model composed of gingival fibroblasts embedded in a collagen matrix overlaid with gingival epithelial cells had a synergistic effect with respect to the secretion of IL-6 and IL-8 in response to LPS stimulation compared to fibroblasts and epithelial cells alone. The 3D co-culture model was stimulated with non-cytotoxic concentrations of hBD-3 (10 and 20 mu M) and LL-37 (0.1 and 0.2 mu M) individually and in combination in the presence of A. actinomycetemcomitans LPS. A multiplex ELISA assay was used to quantify the secretion of 41 different cytokines. hBD-3 and LL-37 acted in synergy to reduce the secretion of GRO-alpha, G-CSF, IP-10, IL-6, and MCP-1, but only had an additive effect on reducing the secretion of IL-8 in response to A. actinomycetemcomitans LPS stimulation. The present study showed that hBD-3 acted in synergy with LL-37 to reduce the secretion of cytokines by an LPS-stimulated 3D model of gingival mucosa. This combination of antimicrobial peptides thus shows promising potential as an adjunctive therapy for treating inflammatory periodontitis.
Resumo:
Aim: To determine the immunoreactivity of synthetic Cryptococcus-derived peptides. Materials & methods: A total of 63 B-cell epitopes from previously identified Cryptococcus gattii immunoreactive proteins were synthesized and evaluated as antigens in ELISAs. The peptides were first evaluated for their ability to react against sera from immunocompetent subjects carrying cryptococcal meningitis. Peptides that yielded high sensitivity and specificity in the first test were then retested with sera from individuals with other fungal pathologies for cross-reactivity determination. Results: Six of 63 synthetic peptides were recognized by antibodies in immunoassays, with a specificity of 100%, sensitivity of 78% and low cross-reactivity. Conclusion: We successfully determined the immunoreactivity of selected synthetic peptides of C. gattii derived proteins.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
High pressure NMR spectroscopy has developed into an important tool for studying conformational equilibria of proteins in solution. We have studied the amide proton and nitrogen chemical shifts of the 20 canonical amino acids X in the random-coil model peptide Ac-Gly-Gly-X-Ala-NH2, in a pressure range from 0.1 to 200 MPa, at a proton resonance frequency of 800 MHz. The obtained data allowed the determination of first and second order pressure coefficients with high accuracy at 283 K and pH 6.7. The mean first and second order pressure coefficients <B-1(15N)> and <B-2(15N)> for nitrogen are 2.91 ppm/GPa and -2.32 ppm/GPa(2), respectively. The corresponding values <B-1(1H)> and <B-2(1H)> for the amide protons are 0.52 ppm/GPa and -0.41 ppm/GPa(2). Residual dependent (1)J(1H15N)-coupling constants are shown.
Resumo:
Mammalian cells have a large number of intracellular peptides that are generated by extralysosomal proteases. In this study, the enzymatic activity of thimet oligopeptidase (EP24.15) was inhibited in human embryonic kidney (HEK) 293 cells using a specific siRNA sequence. The semi-quantitative intracellular peptidome analyses of siRNA-transfected HEK293 cells shows that the levels of specific intracellular peptides are either increased or decreased upon EP24.15 inhibition. Decreased expression of EP24.15 was sufficient to potentiate luciferase gene reporter activation by isoproterenol (1-10 mu M). The protein kinase A inhibitor KT5720 (1 mu M) reduced the positive effect of the EP24.15 siRNA on isoproterenol signaling. Thus, EP24.15 inhibition by siRNA modulates the levels of specific intracellular peptides and isoproterenol signal transduction. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca2+-calmodulin (CaM) and 14-3-3 epsilon, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1-50 mu M, most of the peptides that are investigated in this study modulate the interactions of CaM and 14-3-3 epsilon with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD-7) increases the cytosolic Ca2+ concentration in a dose-dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells.
Resumo:
T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4(+) T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4(+) T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4(+) T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IA(b) and IA(d). Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-gamma secretion against 11 out of the 27 peptides in BALB/c mice; CD4(+) and CD8(+) T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4(+) and CD8(+) T cells, able to simultaneously proliferate and produce IFN-gamma and TNF-alpha, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS.
Resumo:
The present work aimed to investigate the effects of acute sucrose treatment on the perception of painful stimuli. Specifically, we sought to determine the involvement of the endogenous opioid peptide-mediated system as well as the role of the mu(1)-opioid receptor in antinociception organisation induced by acute sucrose intake. Nociception was assessed with the tail-flick test in rats (75, 150 and 250 g) of different ages acutely pre-treated with 500 mu L. of a sucrose solution (25, 50, 150 and 250 g/L) or tap water. Young and Adult rats (250 g) showed antinociception after treatment with 50 g/L (during 5 min) and 150 g/L and 250 g/L (during 20 min) sucrose solutions. Surprisingly, this antinociception was more consistent in mature adult rodents than in pups. To evaluate the role of opioid systems, mature adult rodents were pre-treated with different doses (0.25, 1 or 4mg/kg) of the non-selective opioid receptor antagonist naloxone, the selective pi-opioid receptor antagonist naloxonazine or vehicle followed by 250 g/L sucrose solution treatment. Sucrose-induced antinociception was reduced by pre-treatment with both naloxone and naloxonazine. The present findings suggest that sweet substance-induced hypo-analgesia is augmented by increasing sucrose concentrations in young and adult rodents. Acute oral sucrose treatment inhibits pain in laboratory animal by mediating endogenous opioid peptide and mu(1)-opioid receptor actions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Here we report the isolation of carboxypeptidases A1 and A2 (CPA1 and CPA2) from the rat mesenteric arterial bed perfusate, which were found to be identical with their pancreatic counterparts. Angiotensin (Ang) I, Ang II, Ang-(1-9) and Ang-(1-12) were differentially processed by these enzymes, worthy mentioning the peculiar CPA1-catalyzed conversion of Ang II to Ang-(1-7) and the CPA2-mediated formation of Ang I from Ang-(1-12). We detected gene transcripts for CPA1 and CPA2 in mesentery and other extrapancreatic tissues, indicating that these CPAs might play a role in the renin-angiotensin system in addition to their functions as digestive enzymes. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents.