986 resultados para Oxygen permeability
Resumo:
The present study reports the effect of artificial seawater on oxygen uptake and opercular frequency in an Indian major carp, Labeo rohita. Whereas a control fish of 7.34 g average body weight consumed 1.538 ml O sub(2.) hˉ¹, the 24h and 96h exposed fish of the same body weight consumed 1.07 4 and 0.897 ml O sub(2.) hˉ¹, respectively. The oxygen uptake per unit body weight under controlled condition was 0.219 ml. gˉ¹. hˉ¹, whereas in 24h and 96h exposed fish, it was 0.152 and 0.124 ml. gˉ¹, hˉ¹, respectively. The change in opercular movement in 24h exposed fish was 7.67% higher, whereas in 96h exposed fish, it was 22.43% higher as compared to the control one. All changes are highly significant (p<0.001).
Resumo:
The rate of oxygen consumption by Perna viridis pre-exposed to copper and zinc was studied. Those test individuals pre-exposed to various zinc concentrations showed variability in oxygen consumption irrespective of concentrations and pre-exposure period. While those animals pre-exposed to various copper concentrations registered decrease in oxygen consumption at concentrations above 0.06 p.p.m. copper, pre-exposure to concentrations below 0.02 p.p.m. copper did not result in any clear cut change in the rate of oxygen consumption.
Resumo:
Four size groups of milkfish were tested, 4-18 g, 20-34 g, 35-95 g and 200-300 g. A number of fish from each group were placed separately in identical 1.2 m2 wooden tanks containing seawater filled up to 30 cm depth. The aggregate weight of fish per size group was approximately 1 kg. The fish were held for 72 h, fed with lab-lab and provided with continuous aeration to allow recovery from stress during transport and handling. After the recovery period, aeration was stopped and 200 g of the fine rice bran was spread over the water in each tank creating a film of bran particles on the water surface. This was designed to speed up depletion of dissolved oxygen considering the combined effects of the screening-off of sunlight, the reduction of air-water interface and the breakdown of the bran particles. It is probable that stress on milkfish in brackishwater ponds could start when oxygen level drops to about 1.4 ppm. A further decrease to 0.04 ppm could produce a total kill of all specimens above 4 grams with marketable size and bigger size fish dying first.
Resumo:
The study aimed to determine the oxygen consumption of P. monodon postlarvae at different temperatures. Results suggest dependence of oxygen consumption on both weight of postlarvae and temperature. The relationships appear linear at the temperature range examined. Temperature dependence of oxygen consumption suggests that oxygen requirement (and metabolism) increases with temperature.
Resumo:
A study was conducted to determine the relationships between secchi disk variability, water temperature and dissolved oxygen in fish ponds. Multiple regression correlation analysis was done to evaluate the relationships between the variables. Results indicated that the ranges of secchi disk visibility, water temperature and dissolved oxygen in the study ponds were just within the ranges of the variables for tilapia culture. Multiple regression correlation showed no (or insignificant) relationships with dissolved oxygen and water temperature, dissolved oxygen with secchi disk visibility and water temperature with secchi disk visibility.
Resumo:
下载PDF阅读器"氧糖剥夺"模型作为研究脑缺血的离体模型被广泛使用,该模型模拟了局灶性脑缺血的主要病理变化.然而在缺血病灶核心区与正常脑组织之间称为缺血半暗带的区域,脑血流也有程度不一的降低.为了模拟这种病理变化,发展了一种"不完全氧糖剥夺"的离体脑片模型,该模型满足两个条件,灌流液里氧气部分剥夺而葡萄糖含量降低;"氧糖剥夺"可以导致谷氨酸介导的兴奋性毒性,从而引起神经细胞的坏死.而A型γ-氨基丁酸受体(GABAAR)介导的神经元抑制性活动可以对抗谷氨酸引起的兴奋性毒性,因此近年来引起广泛的研究兴趣.而谷氨酸受体和γ-氨基丁酸受体功能在缺血半暗带是否有改变尚不得而知.因此本文采用海马脑片全细胞膜片钳的记录方法,研究"不完全氧糖剥夺"对海马CA1区神经元的A型γ-氨基丁酸受体介导的抑制性突触后膜电流(IPSCs)的影响.研究发现"不完全氧糖剥夺"使GABAAR介导的IPSCs的峰值增加而衰减时程延长.进一步研究发现该电流的峰值增加是由于GABAAR-氯离子通道的电导增加所致,而与氯离子的反转电位变化无关.这些发现提示在脑缺血的缺血半暗带区域GABAAR介导的神经元抑制性活动可能是增强的,这可能是神经元面对缺血状态产生自我保护的一种内稳态机制.
Resumo:
With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p-n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled amount of oxygen, can produce good quality p-type transparent Cu2O films with electrical resistivity ranging from 102 to 104 Ω-cm, hole mobility of 1-10 cm2/V-s, and optical band-gap of 2.0-2.6 eV. These material properties make this low temperature deposited HiTUS Cu 2O film suitable for fabrication of p-type metal oxide thin film transistors. Furthermore, the capability to deposit Cu2O films with low film stress at low temperatures on plastic substrates renders this approach favourable for fabrication of flexible p-n junction solar cells. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Loose saturated sandy soils may undergo liquefaction under cyclic loading, generating positive excess pore pressures due to their contractile nature and inability to dissipate pore pressures rapidly during earthquake loading. These liquefied soils have a near-zero effective stress state, and hence have very low strength and stiffness, causing severe damage to structures founded upon them. The duration for which this near-zero effective stress state persists is a function of the rate of reconsolidation of the liquefied soil, which in turn is a function of the permeability and stiffness of the soil at this very low effective stress. Existing literature based on observation of physical model tests suggests that the consolidation coefficient C v associated with this reconsolidation of liquefied sand is significantly lower than that of the same soil at moderate stress levels. In this paper, the results of a series of novel fluidisation tests in which permeability k and coefficient of consolidation C v were independently measured will be presented. These results allow calculation of the variation of stiffness E 0 and permeability k with effective stress. It is shown that while permeability increases markedly at very low effective stresses, the simultaneous drop in stiffness measured results in a decrease in consolidation coefficient and hence an increase in the duration for which the soil remains liquefied.
Resumo:
The attrition of two potential oxygen-carriers for chemical-looping, 100. wt% mechanically-mixed, unsupported iron oxide (400-600 μm diameter) and 25. wt% copper oxide impregnated on alumina (600-900 μm diameter), has been studied. The rates of attrition of batches of these particles whilst they were being fluidised and subjected to successive cycles of reduction and oxidation were determined by measuring the rate of production of fine particles elutriated from the bed, as well as progressive changes in the distribution of particle sizes retained in the bed. The ability of the particles to withstand impacts was also investigated by examining the degree of fragmentation of 1. g of reacted particles of known size on projecting them at a target at various velocities. It was found that the mechanical strength of the iron oxide particles deteriorated significantly after repeated cycles of oxidation and reduction. Thus, the rate of elutriation increased ~35-fold between the 1st and 10th cycle. At an impact velocity of 38. m/s, the amount of fragmentation in the impact test, viz. mass fraction of particles after impact having a size less than that before impact, increased from ~2.3. wt% (fresh particles) to 98. wt% after the 10th cycle. The CuO particles, in comparison, were able to withstand repeated reaction: no signs of increased rates of elutriation or fragmentation were observed over ten cycles. These results highlight the importance of selecting a durable support for oxygen-carriers. © 2011 Elsevier Ltd.
Resumo:
The permeability of asphalt concrete has been the subject of much study by pavement engineers over the last decade. The work undertaken has tended to focus on high air voids as the primary indicator of permeable asphalt concrete. This paper presents a simple approach for understanding the parameters that affect permeability. Principles explained by Taylor in 1956 in channel theory work for soils are used to derive a new parameter-representative pore size. Representative pore size is related to the air voids in the compacted mix and the D75 of the asphalt mix grading curve. Collected Superpave permeability data from published literature and data collected by the writers at the Queensland Department of Transport and Main Roads is shown to be better correlated with representative pore size than air voids, reducing the scatter considerably. Using the database of collected field and laboratory permeability values an equation is proposed that pavement engineers can use to estimate the permeability of in-place pavements. © 2011 ASCE.
Resumo:
The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan-Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. © 2012 IOP Publishing Ltd.