552 resultados para Oryza sative
Resumo:
The accumulation of soluble carbohydrates resulting from growth under elevated CO2 may potentially signal the repression of gene activity for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcS). To test this hypothesis we grew rice (Oryza sativa L.) under ambient (350 μL L−1) and high (700 μL L−1) CO2 in outdoor, sunlit, environment-controlled chambers and performed a cross-switching of growth CO2 concentration at the late-vegetative phase. Within 24 h, plants switched to high CO2 showed a 15% and 23% decrease in rbcS mRNA, whereas plants switched to ambient CO2 increased 27% and 11% in expanding and mature leaves, respectively. Ribulose-1,5-bisphosphate carboxylase/oxygenase total activity and protein content 8 d after the switch increased up to 27% and 20%, respectively, in plants switched to ambient CO2, but changed very little in plants switched to high CO2. Plants maintained at high CO2 showed greater carbohydrate pool sizes and lower rbcS transcript levels than plants kept at ambient CO2. However, after switching growth CO2 concentration, there was not a simple correlation between carbohydrate and rbcS transcript levels. We conclude that although carbohydrates may be important in the regulation of rbcS expression, changes in total pool size alone could not predict the rapid changes in expression that we observed.
Resumo:
To confer abscisic acid (ABA) and/or stress-inducible gene expression, an ABA-response complex (ABRC1) from the barley (Hordeum vulgare L.) HVA22 gene was fused to four different lengths of the 5′ region from the rice (Oryza sativa L.) Act1 gene. Transient assay of β-glucuronidase (GUS) activity in barley aleurone cells shows that, coupled with ABRC1, the shortest minimal promoter (Act1–100P) gives both the greatest induction and the highest level of absolute activity following ABA treatment. Two plasmids with one or four copies of ABRC1 combined with the same Act1–100P and HVA22(I) of barley HVA22 were constructed and used for stable expression of uidA in transgenic rice plants. Three Southern blot-positive lines with the correct hybridization pattern for each construct were obtained. Northern analysis indicated that uidA expression is induced by ABA, water-deficit, and NaCl treatments. GUS activity assays in the transgenic plants confirmed that the induction of GUS activity varies from 3- to 8-fold with different treatments or in different rice tissues, and that transgenic rice plants harboring four copies of ABRC1 show 50% to 200% higher absolute GUS activity both before and after treatments than those with one copy of ABRC1.
Resumo:
Function of the maize (Zea mays) gene sugary1 (su1) is required for normal starch biosynthesis in endosperm. Homozygous su1- mutant endosperms accumulate a highly branched polysaccharide, phytoglycogen, at the expense of the normal branched component of starch, amylopectin. These data suggest that both branched polysaccharides share a common precursor, and that the product of the su1 gene, designated SU1, participates in kernel starch biosynthesis. SU1 is similar in sequence to α-(1→6) glucan hydrolases (starch-debranching enzymes [DBEs]). Specific antibodies were produced and used to demonstrate that SU1 is a 79-kD protein that accumulates in endosperm coincident with the time of starch biosynthesis. Nearly full-length SU1 was expressed in Escherichia coli and purified to apparent homogeneity. Two biochemical assays confirmed that SU1 hydrolyzes α-(1→6) linkages in branched polysaccharides. Determination of the specific activity of SU1 toward various substrates enabled its classification as an isoamylase. Previous studies had shown, however, that su1- mutant endosperms are deficient in a different type of DBE, a pullulanase (or R enzyme). Immunoblot analyses revealed that both SU1 and a protein detected by antibodies specific for the rice (Oryza sativa) R enzyme are missing from su1- mutant kernels. These data support the hypothesis that DBEs are directly involved in starch biosynthesis.
Resumo:
Phospholipase A2 (PLA2) was purified about 180,000 times compared with the starting soluble-protein extract from developing elm (Ulmus glabra) seeds. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified fraction showed a single protein band with a mobility that corresponded to 15 kD, from which activity could be recovered. When analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry, the enzyme had a deduced mass of 13,900 D. A 53-amino acid-long N-terminal sequence was determined and aligned with other sequences, giving 62% identity to the deduced amino acid sequence of some rice (Oryza sativa) expressed sequence tag clones. The purified enzyme had an alkaline pH optimum and required Ca2+ for activity. It was unusually stable with regard to heat, acidity, and organic solvents but was sensitive to disulfide bond-reducing agents. The enzyme is a true PLA2, neither hydrolyzing the sn-1 position of phosphatidylcholine nor having any activity toward lysophosphatidylcholine or diacylglycerol. The biochemical data and amino acid sequence alignments indicate that the enzyme is related to the well-characterized family of animal secretory PLA2s and, to our knowledge, is the first plant enzyme of this type to be described.
Alteration of Hormone Levels in Transgenic Tobacco Plants Overexpressing the Rice Homeobox Gene OSH1
Resumo:
The rice (Oryza sativa L.) homeobox gene OSH1 causes morphological alterations when ectopically expressed in transgenic rice, Arabidopsis thaliana, and tobacco (Nicotiana tabacum L.) and is therefore believed to function as a morphological regulator gene. To determine the relationship between OSH1 expression and morphological alterations, we analyzed the changes in hormone levels in transgenic tobacco plants exhibiting abnormal morphology. Levels of the plant hormones indole-3-acetic acid, abscisic acid, gibberellin (GA), and cytokinin (zeatin and trans-zeatin [Z]) were measured in leaves of OSH1-transformed and wild-type tobacco. Altered plant morphology was found to correlate with changes in hormone levels. The more severe the alteration in phenotype of transgenic tobacco, the greater were the changes in endogenous hormone levels. Overall, GA1 and GA4 levels decreased and abscisic acid levels increased compared with wild-type plants. Moreover, in the transformants, Z (active form of cytokinin) levels were higher and the ratio of Z to Z riboside (inactive form) also increased. When GA3 was supplied to the shoot apex of transformants, internode extension was restored and normal leaf morphology was also partially restored. However, such GA3-treated plants still exhibited some morphological abnormalities compared with wild-type plants. Based on these data, we propose the hypothesis that OSH1 affects plant hormone metabolism either directly or indirectly and thereby causes changes in plant development.
Resumo:
Previous studies have demonstrated that the mRNAs encoding the prolamine and glutelin storage proteins are localized to morphologically distinct membranes of the endoplasmic reticulum (ER) complex in developing rice (Oryza sativa L.) endosperm cells. To gain insight about this mRNA localization process, we investigated the association of prolamine polysomes on the ER that delimit the prolamine protein bodies (PBs). The bulk of the prolamine polysomes were resistant to extraction by 1% Triton X-100 either alone or together with puromycin, which suggests that these translation complexes are anchored to the PB surface through a second binding site in addition to the well-characterized ribosome-binding site of the ER-localized protein translocation complex. Suppression of translation initiation shows that these polysomes are bound through the mRNA, as shown by the simultaneous increase in the amounts of ribosome-free prolamine mRNAs and decrease in prolamine polysome content associated with the membrane-stripped PB fraction. The prolamine polysome-binding activity is likely to be associated with the cytoskeleton, based on the association of actin and tubulin with the prolamine polysomes and PBs after sucrose-density centrifugation.
Resumo:
Techniques of compartmental (efflux) and kinetic influx analyses with the radiotracer 13NH4+ were used to examine the adaptation to hypoxia (15, 35, and 50% O2 saturation) of root N uptake and metabolism in 3-week-old hydroponically grown rice (Oryza sativa L., cv IR72) seedlings. A time-dependence study of NH4+ influx into rice roots after onset of hypoxia (15% O2) revealed an initial increase in the first 1 to 2.5 h after treatment imposition, followed by a decline to less than 50% of influx in control plants by 4 d. Efflux analyses conducted 0, 1, 3, and 5 d after the treatment confirmed this adaptation pattern of NH4+ uptake. Half-lives for NH4+ exchange with subcellular compartments, cytoplasmic NH4+ concentrations, and efflux (as percentage of influx) were unaffected by hypoxia. However, significant differences were observed in the relative amounts of N allocated to NH4+ assimilation and the vacuole versus translocation to the shoot. Kinetic experiments conducted at 100, 50, 35, and 15% O2 saturation showed no significant change in the Km value for NH4+ uptake with varying O2 supply. However, Vmax was 42% higher than controls at 50% O2 saturation, unchanged at 35%, and 10% lower than controls at 15% O2. The significance of these flux adaptations is discussed.
Resumo:
Many plants accumulate high levels of free proline (Pro) in response to osmotic stress. This imino acid is widely believed to function as a protector or stabilizer of enzymes or membrane structures that are sensitive to dehydration or ionically induced damage. The present study provides evidence that the synthesis of Pro may have an additional effect. We found that intermediates in Pro biosynthesis and catabolism such as glutamine and Δ1-pyrroline-5-carboxylic acid (P5C) can increase the expression of several osmotically regulated genes in rice (Oryza sativa L.), including salT and dhn4. One millimolar P5C or its analog, 3,4-dehydroproline, produced a greater effect on gene expression than 1 mm l-Pro or 75 mm NaCl. These chemicals did not induce hsp70, S-adenosylmethionine synthetase, or another osmotically induced gene, Em, to any significant extent. Unlike NaCl, gene induction by P5C did not depend on the normal levels of either de novo protein synthesis or respiration, and did not raise abscisic acid levels significantly. P5C- and 3,4-dehydroproline-treated plants consumed less O2, had reduced NADPH levels, had increased NADH levels, and accumulated many osmolytes associated with osmotically stressed rice. These experiments indicate that osmotically induced increases in the concentrations of one or more intermediates in Pro metabolism could be influencing some of the characteristic responses to osmotic stress.
Resumo:
In spite of much effort, no one has succeeded in isolating and characterizing the enzyme(s) responsible for synthesis of cellulose, the major cell wall polymer of plants. We have characterized two cotton (Gossypium hirsutum) cDNA clones and identified one rice (Oryza sativa) cDNA that are homologs of the bacterial celA genes that encode the catalytic subunit of cellulose synthase. Three regions in the deduced amino acid sequences of the plant celA gene products are conserved with respect to the proteins encoded by bacterial celA genes. Within these conserved regions, there are four highly conserved subdomains previously suggested to be critical for catalysis and/or binding of the substrate UDP-glucose (UDP-Glc). An overexpressed DNA segment of the cotton celA1 gene encodes a polypeptide fragment that spans these domains and binds UDP-Glc, while a similar fragment having one of these domains deleted does not. The plant celA genes show little homology at the N- and C-terminal regions and also contain two internal insertions of sequence, one conserved and one hypervariable, that are not found in the bacterial gene sequences. Cotton celA1 and celA2 genes are expressed at high levels during active secondary wall cellulose synthesis in developing cotton fibers. Genomic Southern blot analyses in cotton demonstrate that celA forms a small gene family.
Resumo:
Several recent reports indicate that mobile elements are frequently found in and flanking many wild-type plant genes. To determine the extent of this association, we performed computer-based systematic searches to identify mobile elements in the genes of two "model" plants, Oryza sativa (domesticated rice) and Arabidopsis thaliana. Whereas 32 common sequences belonging to nine putative mobile element families were found in the noncoding regions of rice genes, none were found in Arabidopsis genes. Five of the nine families (Gaijin, Castaway, Ditto, Wanderer, and Explorer) are first described in this report, while the other four were described previously (Tourist, Stowaway, p-SINE1, and Amy/LTP). Sequence similarity, structural similarity, and documentation of past mobility strongly suggests that many of the rice common sequences are bona fide mobile elements. Members of four of the new rice mobile element families are similar in some respects to members of the previously identified inverted-repeat element families, Tourist and Stowaway. Together these elements are the most prevalent type of transposons found in the rice genes surveyed and form a unique collection of inverted-repeat transposons we refer to as miniature inverted-repeat transposable elements or MITEs. The sequence and structure of MITEs are clearly distinct from short or long interspersed nuclear elements (SINEs or LINEs), the most common transposable elements associated with mammalian nuclear genes. Mobile elements, therefore, are associated with both animal and plant genes, but the identity of these elements is strikingly different.
Resumo:
Nramp (natural resistance-associated macrophage protein) is a newly identified family of integral membrane proteins whose biochemical function is unknown. We report on the identification of Nramp homologs from the fly Drosophila melanogaster, the plant Oryza sativa, and the yeast Saccharomyces cerevisiae. Optimal alignment of protein sequences required insertion of very few gaps and revealed remarkable sequence identity of 28% (yeast), 40% (plant), and 55% (fly) with the mammalian proteins (46%, 58%, and 73% similarity), as well as a common predicted transmembrane topology. This family is defined by a highly conserved hydrophobic core encoding 10 transmembrane segments. Other features of this hydrophobic core include several invariant charged residues, helical periodicity of sequence conservation suggesting conserved and nonconserved faces for several transmembrane helices, a consensus transport signature on the intracytoplasmic face of the membrane, and structural determinants previously described in ion channels. These characteristics suggest that the Nramp polypeptides form part of a group of transporters or channels that act on as yet unidentified substrates.
Resumo:
The correspondence between the transversion/transition ratio and the neighboring base composition in chloroplast DNA is examined. For 18 noncoding regions of the chloroplast genome, alignments between rice (Oryza sativa) and maize (Zea mays) were generated by two different methods. Difficulties of aligning noncoding DNA are discussed, and the alignments are analyzed in a manner that reduces alignment artifacts. Sequence divergence is < 10%, so multiple substitutions at a site are assumed to be rare. Observed substitutions were analyzed with respect to the A+T content of the two immediately flanking bases. It is shown that as this content increases, the proportion of transversions also increases. When both the 5'- and 3'-flanking nucleotides are G or C (A+T content of 0), only 25% of the observed substitutions are transversions. However, when both the 5'- and 3'-flanking nucleotides are A or T (A+T content of 2), 57% of the observed substitutions are transversions. Therefore, the influence of flanking base composition on substitutions, previously reported for a single noncoding region, is a general feature of the chloroplast genome.
Resumo:
Fluorescence in situ hybridization (FISH) is a powerful tool for physical mapping in human and other mammalian species. However, application of the FISH technique has been limited in plant species, especially for mapping single- or low-copy DNA sequences, due to inconsistent signal production in plant chromosome preparations. Here we demonstrate that bacterial artificial chromosome (BAC) clones can be mapped readily on rice (Oryza sativa L.) chromosomes by FISH. Repetitive DNA sequences in BAC clones can be suppressed efficiently by using rice genomic DNA as a competitor in the hybridization mixture. BAC clones as small as 40 kb were successfully mapped. To demonstrate the application of the FISH technique in physical mapping of plant genomes, both anonymous BAC clones and clones closely linked to a rice bacterial blight-resistance locus, Xa21, were chosen for analysis. The physical location of Xa21 and the relationships among the linked clones were established, thus demonstrating the utility of FISH in plant genome analysis.
Resumo:
In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as superoxide dismutase (SOD) and catalase. Here we describe the isolation and characterization of another gene in the yeast Saccharomyces cerevisiae that plays a critical role in detoxification of reactive oxygen species. This gene, named ATX1, was originally isolated by its ability to suppress oxygen toxicity in yeast lacking SOD. ATX1 encodes a 8.2-kDa polypeptide exhibiting significant similarity and identity to various bacterial metal transporters. Potential ATX1 homologues were also identified in multicellular eukaryotes, including the plants Arabidopsis thaliana and Oryza sativa and the nematode Caenorhabditis elegans. In yeast cells, ATX1 evidently acts in the transport and/or partitioning of copper, and this role in copper homeostasis appears to be directly relevant to the ATX1 suppression of oxygen toxicity: ATX1 was incapable of compensating for SOD when cells were depleted of exogenous copper. Strains containing a deletion in the chromosomal ATX1 locus were generated. Loss of ATX1 function rendered both mutant and wild-type SOD strains hypersensitive toward paraquat (a generator of superoxide anion) and was also associated with an increased sensitivity toward hydrogen peroxide. Hence, ATX1 protects cells against the toxicity of both superoxide anion and hydrogen peroxide.
Resumo:
A deficiência de Zn no solo causa efeitos indesejáveis na produção agrícola, pois a baixa disponibilidade deste micronutriente para as plantas promove a diminuição da atividade enzimática, além da deficiência deste elemento na alimentação, que pode levar ao estado de subnutrição. Tendo em vista a problemática do Zn no sistema solo-planta e suas variações nos compartimentos do solo, é importante a avaliação de sua fitodisponibilidade e as frações do solo que este elemento está associado. O objetivo deste trabalho foi avaliar a fitodisponibilidade e a compartimentalização de Zn no solo, para as culturas de arroz (Oryza sativa L.) e soja (Glycine max L. Merrill) e avaliar o efeito das doses de Zn sobre a nutrição e exportação deste nutriente pela cultura. Utilizou-se como plantas teste as culturas de arroz e soja para avaliar o efeito das doses de Zn sobre a nutrição e translocação deste nutriente até os grãos. Para tanto, uma amostra de um Latossolo Vermelho, textura argilosa da região de Piracicaba (SP) foi utilizada e ZnCl2 (marcado com 65Zn) como fonte. O experimento foi conduzido em casa de vegetação em DIC, com cinco doses de Zn (0, 1, 2, 4 e 8 mg kg-1 de solo), com quatro repetições. O experimento foi conduzido até a formação de grãos e foi realizada determinação de Zn por Espectrômetria de Absorção Atômica após digestão nitroperclórica e contagem do 65Zn nas partes da planta: parte aérea (PA) e panícula (P), para arroz e PA, vagem (V) e grão (G), para soja. Calculou-se a quantidade de Zn proveniente da fonte (Znpf) nas partes das plantas e o aproveitamento do Zn da fonte pelas culturas (Ap). Nas amostras de solo foram realizadas extrações por DTPA (ZnDTPA) e Mehlich-1 (ZnM1) em duas subamostragens (t1 e t2), antes da semeadura e florescimento, respectivamente. O fracionamento de Zn foi realizado em amostras de t2 nas frações: trocável (ZnTroc); ligado a carbonatos (ZnCarb); a matéria orgânica (ZnMO); a óxidos (ZnOxi) e residual (Znres). Adicionalmente, foi realizada análise do teor pseudo-total de Zn (ZnPST). Os dados obtidos foram submetidos à análise de variância pelo teste-F a 95 % de probabilidade, ajuste das variáveis em função das doses por regressões e teste de média e análises de correlações entre as principais variáveis respostas. O Zn acumulado total na planta se ajustou à regressão linear em função do aumento das doses, entretanto ao analisar as partes separadamente, só houve diferença entre as doses para a variável PA em ambas as culturas. O Znpf total nas plantas apresentou incremento com a adição das doses crescentes de Zn ao solo, entretanto, eu aproveitamento foi baixo, 12 e 8,75 % para arroz e soja, respectivamente. As doses de ZnCl2 adicionadas ao solo, aumentaram a concentração de Zn presente nas frações ZnTroc > ZnMO > ZnCarb, em ordem decrescente. O Zn total acumulado nas plantas de arroz e soja apresentam correlações crescentes para os extratores DTPA e M1 nas duas subamostragens (t1 e t2), em função das doses avaliadas. O Zn extraído pelo DTPA ou M1, apresentaram correlação significativa com o Zn extraído nas frações, na ordem decrescente, ZnTroc > ZnCarb > ZnMO