991 resultados para Optical lattices
Resumo:
Typical image-guided diffuse optical tomographic image reconstruction procedures involve reduction of the number of optical parameters to be reconstructed equal to the number of distinct regions identified in the structural information provided by the traditional imaging modality. This makes the image reconstruction problem less ill-posed compared to traditional underdetermined cases. Still, the methods that are deployed in this case are same as those used for traditional diffuse optical image reconstruction, which involves a regularization term as well as computation of the Jacobian. A gradient-free Nelder-Mead simplex method is proposed here to perform the image reconstruction procedure and is shown to provide solutions that closely match ones obtained using established methods, even in highly noisy data. The proposed method also has the distinct advantage of being more efficient owing to being regularization free, involving only repeated forward calculations. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.
Resumo:
Nearly pollution-free solutions of the Helmholtz equation for k-values corresponding to visible light are demonstrated and verified through experimentally measured forward scattered intensity from an optical fiber. Numerically accurate solutions are, in particular, obtained through a novel reformulation of the H-1 optimal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a globally smooth polynomial reproducing framework, the compact and smooth test functions are so designed that their normal derivatives are zero everywhere on the local boundaries of their compact supports. This circumvents the need for a priori knowledge of the true solution on the support boundary and relieves the weak form of any jump boundary terms. For numerical demonstration of the above formulation, we used a multimode optical fiber in an index matching liquid as the object. The scattered intensity and its normal derivative are computed from the scattered field obtained by solving the Helmholtz equation, using the new formulation and the conventional finite element method. By comparing the results with the experimentally measured scattered intensity, the stability of the solution through the new formulation is demonstrated and its closeness to the experimental measurements verified.
Resumo:
Glasses in the x(BaO-TiO2)-B2O3 (x = 0.25, 0.5, 0.75, and 1 mol.) system were fabricated via the conventional melt-quenching technique. Thermal stability and glass-forming ability as determined by differential thermal analysis (DTA) were found to increase with increasing BaO-TiO2 (BT) content. However, there was no noticeable change in the glass transition temperature (T-g). This was attributed to the active participation of TiO2 in the network formation especially at higher BT contents via the conversion of the TiO6 structural units into TiO4 units, which increased the connectivity and resulted in an increase in crystallization temperature. Dielectric and optical properties at room temperature were studied for all the glasses under investigation. Interestingly, these glasses were found to be hydrophobic. The results obtained were correlated with different structural units and their connectivity in the glasses.
Resumo:
We study absorption spectra and two photon absorption coefficient of expanded porphyrins (EPs) by the density matrix renormalization group (DMRG) technique. We employ the Pariser-Parr-Pople (PPP) Hamiltonian which includes long-range electron-electron interactions. We find that, in the 4n+2 EPs, there are two prominent low-lying one-photon excitations, while in 4n EPs, there is only one such excitation. We also find that 4n+2 EPs have large two-photon absorption cross sections compared to 4n EPs. The charge density rearrangement in the one-photon excited state is mostly at the pyrrole nitrogen site and at the meso carbon sites. In the two-photon states, the charge density rearrangement occurs mostly at the aza-ring sites. In the one-photon state, the C-C bond length in aza rings shows a tendency to become uniform. In the two-photon state, the bond distortions are on C-N bonds of the pyrrole ring and the adjoining C-C bonds which connect the pyrrole ring to the aza or meso carbon sites.
Resumo:
Unusual optical bandgap narrowing is observed in undoped SnO2 nanoparticles synthesized by the solution combustion method. The estimated crystallite size is nearly 7 nm. Though the quantum confinement effect predicts a larger optical bandgap for materials with small crystallite size than the bulk, the optical bandgap in the as synthesized materials is found to be 2.9 eV compared to the reported value of 3.6 eV for bulk SnO2 particles. The yellow-green photoluminescence emissions and the observed narrowing of the bandgap can be attributed to the deep donor levels of oxygen vacancies, owing to the high exothermicity of the combustion reaction and the faster cooling rates involved in the process.
Resumo:
This paper presents the design and development of a novel optical vehicle classifier system, which is based on interruption of laser beams, that is suitable for use in places with poor transportation infrastructure. The system can estimate the speed, axle count, wheelbase, tire diameter, and the lane of motion of a vehicle. The design of the system eliminates the need for careful optical alignment, whereas the proposed estimation strategies render the estimates insensitive to angular mounting errors and to unevenness of the road. Strategies to estimate vehicular parameters are described along with the optimization of the geometry of the system to minimize estimation errors due to quantization. The system is subsequently fabricated, and the proposed features of the system are experimentally demonstrated. The relative errors in the estimation of velocity and tire diameter are shown to be within 0.5% and to change by less than 17% for angular mounting errors up to 30 degrees. In the field, the classifier demonstrates accuracy better than 97.5% and 94%, respectively, in the estimation of the wheelbase and lane of motion and can classify vehicles with an average accuracy of over 89.5%.
Resumo:
This paper deals with an experimental study of pressure-swirl hydraulic injector nozzles using non-intrusive optical techniques. Experiments were conducted to study atomization characteristics using two nozzles with different orifice diameters, 0.3 mm and 0.5 mm, and injection pressures, 0.3-3.5 Mpa, which correspond to Reynolds number (Re-p) = 7,000-45,000, depending on nozzle utilized. Three laser diagnostic techniques were utilized: Shadowgraph, PIV (Particle Image Velocimetry), and PDPA (Phase Doppler Particle Anemometry). Measurements made in the spray in both axial and radial directions indicate that velocity, average droplet diameter profiles, and spray dynamics are highly dependent on the nozzle characteristics and injection pressure. Limitations of these techniques in the different flow regimes, related to the primary and secondary breakups as well as coalescence, are provided. Results indicate that all three techniques provide similar results throughout the different regimes. Shadowgraph and PDPA were possible in the secondary atomization and coalescence regimes while PIV measurements could be made only at the end of secondary atomization and coalescence.
Resumo:
In this paper optical code-division multiple-access (O-CDMA) packet network is considered, which offers inherent security in the access networks. The application of O-CDMA to multimedia transmission (voice, data, and video) is investigated. The simultaneous transmission of various services is achieved by assigning to each user unique multiple code signatures. Thus, by applying a parallel mapping technique, we achieve multi-rate services. A random access protocol is proposed, here, where all distinct codes are used, for packet transmission. The codes, Optical Orthogonal Code (OOC), or 1D codes and Wavelength/Time Single-Pulse-per-Row (W/T SPR), or 2D codes, are analyzed. These 1D and 2D codes with varied weight are used to differentiate the Quality of Service (QoS). The theoretical bit error probability corresponding to the quality of each service is established using 1D and 2D codes in the receiver noiseless case and compared. The results show that, using 2D codes QoS in multimedia transmission is better than using 1D codes.
Resumo:
Fine powders comprising nanocrystallites of barium sodium niobate, Ba2NaNb5O15 (BNN) were obtained via a citrate assisted sol-gel route at a much lower temperature than that of the conventional solid-state reaction route. The phase evolution of BNN as a function of temperature was investigated by thermogravimetric analysis (TGA), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). DTA data followed by XRD studies confirmed the BNN formation temperature to be around 923 K. The as-synthesized powders heat-treated at 923 K/10 h attained an orthorhombic structure akin to that of the parent BNN phase. Transmission electron microscopy revealed that the nanocrystallites are associated with dislocations. The optical band gap was calculated using the Kubelka-Munk function. These nanocrystallites exhibited strong visible photoluminescence (PL) at room temperature. The PL mechanism was explained by invoking the dielectric confinement effect, defect states and generation of self-trapped excitons.
Resumo:
The optical WDM systems are usually affected by the Four Wave Mixing effects. This paper examines the different frequency allocations in terms of FWM efficiency for CWDM, DWDM and for three various proposed modes.
Resumo:
We study a system of hard-core bosons at half-filling in a one-dimensional optical superlattice. The bosons are allowed to hop to nearest-and next-nearest-neighbor sites. We obtain the ground-state phase diagram as a function of microscopic parameters using the finite-size density-matrix renormalization-group method. Depending on the sign of the next-nearest-neighbor hopping and the strength of the superlattice potential the system exhibits three different phases, namely the bond-order (BO) solid, the superlattice induced Mott insulator (SLMI), and the superfluid (SF) phase. When the signs of both hopping amplitudes are the same (the unfrustratedase), the system undergoes a transition from the SF to the SLMI at a nonzero value of the superlattice potential. On the other hand, when the two amplitudes differ in sign (the frustrated case), the SF is unstable to switching on a superlattice potential and also exists only up to a finite value of the next-nearest-neighbor hopping. This part of the phase diagram is dominated by the BO phase which breaks translation symmetry spontaneously even in the absence of the superlattice potential and can thus be characterized by a bond-order parameter. The transition from BO to SLMI appears to be first order.
Resumo:
Light wave transmission - its compression, amplification, and the optical energy storage in an ultra slow wave medium (USWM) is studied analytically. Our phenomenological treatment is based entirely on the continuity equation for the optical energy flux, and the well-known distribution-product property of Dirac delta-function. The results so obtained provide a clear understanding of some recent experiments on light transmission and its complete stoppage in an USWM.
Resumo:
Measurement of in-plane motion with high resolution and large bandwidth enables model-identification and real-time control of motion-stages. This paper presents an optical beam deflection based system for measurement of in-plane motion of both macro- and micro-scale motion stages. A curved reflector is integrated with the motion stage to achieve sensitivity to in-plane translational motion along two axes. Under optimal settings, the measurement system is shown to theoretically achieve sub-angstrom measurement resolution over a bandwidth in excess of 1 kHz and negligible cross-sensitivity to linear motion. Subsequently, the proposed technique is experimentally demonstrated by measuring the in-plane motion of a piezo flexure stage and a scanning probe microcantilever. For the former case, reflective spherical balls of different radii are employed to measure the in-plane motion and the measured sensitivities are shown to agree with theoretical values, on average, to within 8.3%. For the latter case, a prototype polydimethylsiloxane micro-reflector is integrated with the microcantilever. The measured in-plane motion of the microcantilever probe is used to identify nonlinearities and the transient dynamics of the piezo-stage upon which the probe is mounted. These are subsequently compensated by means of feedback control. (C) 2013 AIP Publishing LLC.
Resumo:
In this paper we examine the energy consumption of IP Over Optical WDM Networks. As the number of Internet users increases the Internet expands in reach and capacity. This results in increased energy consumption of the network. Minimizing the power consumption, termed as ``Greening the Internet'', is desirable to help service providers (SP) operate their networks and provide services more efficiently in terms of power consumption. Minimizing the operational power typically depends on the strategy (e. g., lightpath bypass, lightpath non-bypass and traffic grooming) and operations (e. g., electronic domain versus optical domain). We consider a typical optical backbone network model, and develop a model which minimizes the power consumption. Performance calculation shows that our method consumes less power compared to traffic grooming approach.