933 resultados para Operator Error
Resumo:
We calculate the set of O(\alpha_s) corrections to the double differential decay width d\Gamma_{77}/(ds_1 \, ds_2) for the process \bar{B} \to X_s \gamma \gamma originating from diagrams involving the electromagnetic dipole operator O_7. The kinematical variables s_1 and s_2 are defined as s_i=(p_b - q_i)^2/m_b^2, where p_b, q_1, q_2 are the momenta of b-quark and two photons. While the (renormalized) virtual corrections are worked out exactly for a certain range of s_1 and s_2, we retain in the gluon bremsstrahlung process only the leading power w.r.t. the (normalized) hadronic mass s_3=(p_b-q_1-q_2)^2/m_b^2 in the underlying triple differential decay width d\Gamma_{77}/(ds_1 ds_2 ds_3). The double differential decay width, based on this approximation, is free of infrared- and collinear singularities when combining virtual- and bremsstrahlung corrections. The corresponding results are obtained analytically. When retaining all powers in s_3, the sum of virtual- and bremstrahlung corrections contains uncanceled 1/\epsilon singularities (which are due to collinear photon emission from the s-quark) and other concepts, which go beyond perturbation theory, like parton fragmentation functions of a quark or a gluon into a photon, are needed which is beyond the scope of our paper.
Resumo:
BACKGROUND: Physiological data obtained with the pulmonary artery catheter (PAC) are susceptible to errors in measurement and interpretation. Little attention has been paid to the relevance of errors in hemodynamic measurements performed in the intensive care unit (ICU). The aim of this study was to assess the errors related to the technical aspects (zeroing and reference level) and actual measurement (curve interpretation) of the pulmonary artery occlusion pressure (PAOP). METHODS: Forty-seven participants in a special ICU training program and 22 ICU nurses were tested without pre-announcement. All participants had previously been exposed to the clinical use of the method. The first task was to set up a pressure measurement system for PAC (zeroing and reference level) and the second to measure the PAOP. RESULTS: The median difference from the reference mid-axillary zero level was - 3 cm (-8 to + 9 cm) for physicians and -1 cm (-5 to + 1 cm) for nurses. The median difference from the reference PAOP was 0 mmHg (-3 to 5 mmHg) for physicians and 1 mmHg (-1 to 15 mmHg) for nurses. When PAOP values were adjusted for the differences from the reference transducer level, the median differences from the reference PAOP values were 2 mmHg (-6 to 9 mmHg) for physicians and 2 mmHg (-6 to 16 mmHg) for nurses. CONCLUSIONS: Measurement of the PAOP is susceptible to substantial error as a result of practical mistakes. Comparison of results between ICUs or practitioners is therefore not possible.
Resumo:
Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and a point distribution model is discussed. We present a 2D/3D reconstruction scheme combining statistical extrapolation and regularized shape deformation with an iterative image-to-model correspondence establishing algorithm, and show its application to reconstruct the surface of proximal femur. The image-to-model correspondence is established using a non-rigid 2D point matching process, which iteratively uses a symmetric injective nearest-neighbor mapping operator and 2D thin-plate splines based deformation to find a fraction of best matched 2D point pairs between features detected from the fluoroscopic images and those extracted from the 3D model. The obtained 2D point pairs are then used to set up a set of 3D point pairs such that we turn a 2D/3D reconstruction problem to a 3D/3D one. We designed and conducted experiments on 11 cadaveric femurs to validate the present reconstruction scheme. An average mean reconstruction error of 1.2 mm was found when two fluoroscopic images were used for each bone. It decreased to 1.0 mm when three fluoroscopic images were used.
Resumo:
We derive the additive-multiplicative error model for microarray intensities, and describe two applications. For the detection of differentially expressed genes, we obtain a statistic whose variance is approximately independent of the mean intensity. For the post hoc calibration (normalization) of data with respect to experimental factors, we describe a method for parameter estimation.
Resumo:
The construction of a reliable, practically useful prediction rule for future response is heavily dependent on the "adequacy" of the fitted regression model. In this article, we consider the absolute prediction error, the expected value of the absolute difference between the future and predicted responses, as the model evaluation criterion. This prediction error is easier to interpret than the average squared error and is equivalent to the mis-classification error for the binary outcome. We show that the distributions of the apparent error and its cross-validation counterparts are approximately normal even under a misspecified fitted model. When the prediction rule is "unsmooth", the variance of the above normal distribution can be estimated well via a perturbation-resampling method. We also show how to approximate the distribution of the difference of the estimated prediction errors from two competing models. With two real examples, we demonstrate that the resulting interval estimates for prediction errors provide much more information about model adequacy than the point estimates alone.
Resumo:
We propose a new method for fitting proportional hazards models with error-prone covariates. Regression coefficients are estimated by solving an estimating equation that is the average of the partial likelihood scores based on imputed true covariates. For the purpose of imputation, a linear spline model is assumed on the baseline hazard. We discuss consistency and asymptotic normality of the resulting estimators, and propose a stochastic approximation scheme to obtain the estimates. The algorithm is easy to implement, and reduces to the ordinary Cox partial likelihood approach when the measurement error has a degenerative distribution. Simulations indicate high efficiency and robustness. We consider the special case where error-prone replicates are available on the unobserved true covariates. As expected, increasing the number of replicate for the unobserved covariates increases efficiency and reduces bias. We illustrate the practical utility of the proposed method with an Eastern Cooperative Oncology Group clinical trial where a genetic marker, c-myc expression level, is subject to measurement error.