914 resultados para ORGANOYTTRIUM CATIONS
Resumo:
The hydrothermal reactions of metavanadate and divalent iron salts in the presence of nitrogen-donor chelating ligands yield the complex [Fe(C10H8N2)(3)](2)[V4O12].10H(2)O, which consists of one centrosymmetric eight-membered ring [V4O12](4-) anion cluster, formed by four VO4 tetrahedra sharing vertices, two discrete octahedral [Fe(C10H8N2)(3)](2+) cations, formed by three 2,2'-bipyridyl ligands coordinated to Fe-II, and ten water molecules of solvation. The anion and coordination cations are isolated and form anion and cation layers, respectively. In the anion layers, these anions and water molecules of solvation are linked to each other, in a two-dimensional motif, through hydrogen-bonding interactions.
Resumo:
The extractions of the selected rare earths (Sc, Y, La and Gd) from hydrochloric acid solutions have been investigated using bis(2,4,4-trimethylpentyl)-mono thiophosphinic acid (Cyanex 302, HL) in heptane as an extractant. The results demonstrate that the extractions of rare earths occur via the following reaction: Sc(OH)(2+) + 2[(HL)(2)]((O)) double left right arrow [Sc(OH)L-2 (.) 2(HL)]((O)) + 2H(+) Y3+ + 3[(HL)(2)]((O)) double left right arrow [Y(HL2)(3)]((O)) + 3H(+) La(OH)(2)(+) + 3[(HL)(2)](O) double left right arrow [La(OH)(2)L (.) 5(HL)]((O)) + H+ Gd(OH)(2+) + 3[(HL)(2)]((O)) double left right arrow [Gd(OH)L-2 (.) 4(HL)]((O)) + 2H(+) The pH(1/2) values and equilibrium constants of the extracted complexes have been deduced by taking into account the aqueous phase complexation of the metal ion with hydroxyl ligands and plausible complexes extracted into the organic phase. According to the pH(1/2) values, it is possible to realize mutual separation among Sc(III), Y(III), La(III) and Gd(III) with Cyanex 302 by controlling aqueous acidity.
Resumo:
The title bimetallic compound, [Yb-4(mu(3)-OH)(4)(C6H13NO2)(7)-(H2O)(7)][ZnCl4][ZnCl3(OH)]Cl-4.8H(2)O, was synthesized at near physiological pH (6.0). The compound exhibits some novel structural features, including an asymmetric [Yb-4(mu(3)-OH)(4)(L-leucine)(7)(H2O)(7)](8+) complex cation in which four OH groups act as bridging ligands, linking four Yb3+ cations into a Yb4O4 structural unit. Each pair of adjacent Yb3+ ions is further bridged by one carboxy group from a leucine ligand. Water molecules and a monodentate leucine ligand also coordinate to Yb3+ ions, completing their eight-coordinate square-antiprismatic coordination. The Yb-4(mu(3)-OH)(4)(L-leucine)(7)(H2O)(7)](8+) cation, the [ZnCl4](2-), [ZnCl3OH](2-) and Cl- anions, and the lattice water molecules are linked via hydrogen bonds.
Resumo:
The title complex, [Sm-2(C6H13NO2)(4)(H2O)(8)](ClO4)(6), contains dimeric [Sm-2(Ile)(4)(H2O)(8)](6+) cations (Ile is L-isoleucine) and perchlorate anions. The two Sm3+ cations lie on a crystallographic twofold rotation axis. The four isoleucine molecules act as bridging ligands, linking two Sm3+ ions through their carboxyl O atoms. Each Sm3+ ion is also coordinated by four water molecules to complete eightfold coordination in a square antiprismatic fashion. One of the three perchlorate anions in the asymmetric unit is disordered.
Resumo:
Competition dialysis was used to study the interactions of 13 substituted aromatic diamidine compounds with 13 nucleic acid structures and sequences. The results show a striking selectivity of these compounds for the triplex structure poly dA:(poly dT)(2), a novel aspect of their interaction with nucleic acids not previously described. The triplex selectivity of selected compounds was confirmed by thermal denaturation studies. Triplex selectivity was found to be modulated by the location of amidine substiuents on the core phenyl-furan-phenyl ring scaffold. Molecular models were constructed to rationalize the triplex selectivity of DB359, the most selective compound in the series. Its triplex selectivity was found to arise from optimal ring stacking on base triplets, along with proper positioning of its amidine substituents to occupy the minor and the major-minor grooves of the triplex. New insights into the molecular recognition of nucleic acid structures emerged from these studies, adding to the list of available design principles for selectively targeting DNA and RNA.
Resumo:
The synthesis and crystal structure of the first mixed-metal organometallic polymer network containing phenylthiolato ligands, [K2Fe(SPh)(4)](n), are investigated. The simple phenyl-thiolate acts as a sigma- and pi-donor ligand to give a 3-D potassium iron coordination polymer with both metal-carbon and metal-sulfur coordination interactions.
Resumo:
In the organic-inorganic perovskites family, the < 100 >-oriented type has been extensively investigated as a result of its unique magnetic, optical, and electrical properties, and only one type of < 110 >-oriented hybrid perovskite stabilized by methylammonium and iodoformamidinium cations or the latter themselves has been known so far. In this paper, another novel < 110 >-oriented organic-inorganic perovskite (C6H13N3)-PbBr4 (compound 1) has been prepared by reacting N-(3-aminopropyl)imidazole (API) with PbBr2 in hydrobromic acid. The crystal structure is determined, which indicates that the perovskite is stabilized by API. The introduction of the optically active organic ligand API into the hybrid perovskite results in a red shift and a great enhancement of photoluminescence in the perovskite with respect to organic ligand API itself. These results have been explained according to calculation based on density-functional theory. Moreover, the excellent film processing ability for the perovskite (C6H13N3)PbBr4 together with the improved optical properties makes it have potential application in optoelectronic devices.
Resumo:
Sequential deprotonations of meso-(p-hydroxyphenyl)porphyrins (p-OHTPPH2) in DMF + H2O (V/V = 1:1) mixture have been verified to result in the appearance of hyperporphyrin spectra. However, when the deprotonations of these p-OHTPPH2 are carried out in DMF, the spectral changes differ considerably from those in the mixture mentioned above. At low [OH-], the optical spectra in the visible region are still considered to have characteristics of hyperporphyrin spectra. Further deprotonation at much higher basicity makes the optical spectra form three-banded spectra similar to those in the acidic solution. To clarify the molecular origins of these changes, UV-vis, resonance Raman (RR), proton nuclear magnetic resonance (H-1 NMR) experiments are carried out. Our data give evidence that p-OHTPPH2 in DMF can be further deprotonated of pyrrolic-H by higher concentrated NaOH, due to an aprotic medium like DMF effectively weakening the basicity of the porphyrin relative to that of the NaOH, and coordinates with two sodium ions (except the sodium ions that interact with the peripherial phenoxide anions) to form the sodium complexes of p-OHTPPH2 (Na2P, to lay a strong emphasis on the sodium ions that coordinate with the central nitrogen atom), which can be regarded as the porphyrin anions being perturbed by the sodium cations due to their highly ionic character.
Resumo:
Molybdenum trioxide nanobelts and prism-like particles with good crystallinity and high surface areas have been prepared by a facile hydrothermal method, and the morphology could be controlled by using different inorganic salts, such as KNO3, Ca(NO3)(2), La(NO3)(3), etc. The possible growth mechanism of molybdenum trioxide prism-like particles is discussed on the basis of the presence of HI and the modification of metal cations. The as-prepared nanomaterials are characterized by means of powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and ultraviolet and visible spectroscopy (UV-vis). TEM and HRTEM micrographs show that the molybdenum trioxide nanobelts and prism-like particles have a relatively high degree of crystallinity and uniformity. BET specific surface areas of the as-prepared molybdenum trioxide nanocrystals are 67-79 m(2)g(-1). XPS analysis indicates that the hexavalent molybdenum is predominant in the nanocrystals. UV-vis spectra reveal that the direct band gap energy of the annealed molybdenum trioxide prism-like particles shows a pronounced blue shift compared to that of bulk MoO3 powder.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, and dissociation energies of the title molecules in neutral, positively, and negatively charged ions were studied by use of density functional methods B3LYP, BLYP, BHLYP, BPW91, and B3PW91. The calculated results are compared with experiments and previous theoretical studies. It was found that the calculated properties are highly dependent on the functionals employed, in particular for the dissociation energy and vibrational frequency. For neutral species, pure density functional methods BLYP and BPW91 have relatively good performance in reproducing the experimental bond distance and vibrational frequency. For cations, hybrid exchange functional methods B3LYP and B3PW91 are good in predicting the dissociation energy. For both neutral and charged species, BHLYP tends to give smaller dissociation energy.
Resumo:
In this paper, four novel silver(I) sulfonate coordination polymers containing neutral ligands, namely, [Ag(2)Ll (biim)(2)]center dot 2H(2)O (1). AgL2(biim) (2), [Ag(HL3)(Pic)(2)]center dot H2O (3), and [Ag-3(L3)(HL3)(4,4'-bipy)(3)(H2O)(2)]center dot 4H(2)O (4), have been synthesized [L1 = 3-carboxy-4-hydroxybenzenesulfonate, L2 = p-aminobenzenesulfonate, H(2)L3 = p-hydroxybenzenesulfonic acid, biim = 1,1'-(1.4-butanediyl)-bis(imidazole), Pic = beta-picoline, 4,4'-bipy = 4,4'-bipyridine]. For compounds 1 and 2, Ag(I) cations are bridged by biim ligands to form a one-dimensional (1D) "zigzag" chain, and L1 and L2 sulfonate ligands are not coordinated to the silver cation. Compound 3 has a dimeric structure in which two silver cations are bridged by two HL3 ligands. For compound 4, L3 ligand coordinates to a silver cation as a monodentate ligand, and Ag(l) cations are bridged by 4,4'-bipy ligands to form a ID chain. Compound 1 contains water dimers, while compound 4 contains water trimers. Compounds 1-3 display room-temperature photoluminescence.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies, and dipole moments of the title molecules in neutral, positively, and negatively charged ions were studied using the density functional method. Ground state was assigned for each species. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides an ionic component, covalent bonds are formed between the metal s, d orbitals and the silicon 3p orbital. The covalent character increases from ScSi (YSi) to NiSi (PdSi) for 3d (4d) metal monosilicides, then decreases. For 5d metal monosilicides, the covalent character increases from LaSi to OsSi, then decreases. For the dissociation of cations, the dissociation channel depends on the magnitude of the ionization potential between metal and silicon. If the ionization potential of the metal is smaller than that of silicon, channel MSi+-> M++Si is favored. Otherwise, MSi+-> M+Si+ will be favored. A similar behavior was observed for anions, in which the dissociation channel depends on the magnitude of electron affinity.
Resumo:
8-Hydroxyquinoline (8-q) salt of pyromellitic acid (benzene-1,2,4,5-tetracarboxylic acid, H(4)bta) forms robust lamellar structure where [H(2)bta](2-) anions build up sheets through strong hydrogen bonds in two dimensions and [H-8-q](+) cations act as pillars to afford an extended three dimensional network.
Resumo:
Facilitated ion transfer reactions of 20 amino acids with di.benzo-18-crown-6 (DB18C6) at the water/1,2-dichloroethane (W/DCE) interfaces supported at the tips of micro- and nano-pipets were investigated systematically using cyclic voltammetry. It was found that there were only 10 amino acids, that is, Leu, Val, Ile, Phe, Trp, Met, Ala, Gly, Cys, Gln (in brief), whose protonated forms as cations can give well-defined facilitated ion transfer voltammograms within the potential window, and the reaction pathway was proven to be consistent with the transfer by interfacial complexation/dissociation (TIC/TID) mechanisms. The association constants of DB 18C6 with different amino acids in the DCE (beta(0)), and the kinetic parameters of reaction were evaluated based on the steady-state voltammetry of micro- or nano-pipets, respectively The experimental results demonstrated that the selectivity of complexation of protonated amino acid by DB18C6 compared with that of alkali metal cations was low, which can be attributed to the vicinal effect arising from steric hindrance introduced by their side group and the steric bulk effect by lipophilic stabilization.
Resumo:
Two novel organic-inorganic hybrid compounds, (H(2)enMe)(4)(H3O)[Ni(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (1) and (H(2)enMe)(4)(H3O)[Cu(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (2) (enMe = 1,2-diaminopropane), have been hydrothermally synthesized and characterized by elemental analyses, IR, EPR, XPS, UV-Vis spectra and TG analyses. Single crystal X-ray diffraction shows that 1 and 2 are isostructural compounds. Both the compounds exhibit an unusual two-dimensional (2-D) window-like network consisting of one-dimensional (1-D) chains of sodium molybdenum phosphate anions connected by transition metal coordination complexes cations. Compound 1 and 2 represent the first 2-D molybdenum phosphate skeleton pillared by transition metal complex fragments.