934 resultados para ONDAS SÍSMICAS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the development of new microwaves structures, filters and high gain antenna, through the cascading of frequency selective surfaces, which uses fractals Dürer and Minkowski patches as elements, addition of an element obtained from the combination of the other two simple the cross dipole and the square spiral. Frequency selective surfaces (FSS) includes a large area of Telecommunications and have been widely used due to its low cost, low weight and ability to integrate with others microwaves circuits. They re especially important in several applications, such as airplane, antennas systems, radomes, rockets, missiles, etc. FSS applications in high frequency ranges have been investigated, as well as applications of cascading structures or multi-layer, and active FSS. In this work, we present results for simulated and measured transmission characteristics of cascaded structures (multilayer), aiming to investigate the behavior of the operation in terms of bandwidth, one of the major problems presented by frequency selective surfaces. Comparisons are made with simulated results, obtained using commercial software such as Ansoft DesignerTM v3 and measured results in the laboratory. Finally, some suggestions are presented for future works on this subject

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several research lines show that sleep favors memory consolidation and learning. It has been proposed that the cognitive role of sleep is derived from a global scaling of synaptic weights, able to homeostatically restore the ability to learn new things, erasing memories overnight. This phenomenon is typical of slow-wave sleep (SWS) and characterized by non-Hebbian mechanisms, i.e., mechanisms independent of synchronous neuronal activity. Another view holds that sleep also triggers the specific enhancement of synaptic connections, carrying out the embossing of certain mnemonic traces within a lattice of synaptic weights rescaled each night. Such an embossing is understood as the combination of Hebbian and non-Hebbian mechanisms, capable of increasing and decreasing respectively the synaptic weights in complementary circuits, leading to selective memory improvement and a restructuring of synaptic configuration (SC) that can be crucial for the generation of new behaviors ( insights ). The empirical findings indicate that initiation of Hebbian plasticity during sleep occurs in the transition of the SWS to the stage of rapid eye movement (REM), possibly due to the significant differences between the firing rates regimes of the stages and the up-regulation of factors involved in longterm synaptic plasticity. In this study the theories of homeostasis and embossing were compared using an artificial neural network (ANN) fed with action potentials recorded in the hippocampus of rats during the sleep-wake cycle. In the simulation in which the ANN did not apply the long-term plasticity mechanisms during sleep (SWS-transition REM), the synaptic weights distribution was re-scaled inexorably, for its mean value proportional to the input firing rate, erasing the synaptic weights pattern that had been established initially. In contrast, when the long-term plasticity is modeled during the transition SWSREM, an increase of synaptic weights were observed in the range of initial/low values, redistributing effectively the weights in a way to reinforce a subset of synapses over time. The results suggest that a positive regulation coming from the long-term plasticity can completely change the role of sleep: its absence leads to forgetting; its presence leads to a positive mnemonic change

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the globalized world modern telecommunications have assumed key role within the company, causing a large increase in demand for the wireless technology of communication, which has been happening in recent years have greatly increased the number of applications using this technology. Due to this demand, new materials are developed to enable new control mechanisms and propagation of electromagnetic waves. The research to develop new technologies for wireless communication presents a multidisciplinary study that covers from the new geometries for passive antennas, active up to the development of materials for devices that improve the performance at the frequency range of operation. Recently, planar antennas have attracted interest due to their characteristics and advantages when compared with other types of antennas. In the area of mobile communications the need for antennas of this type has become increasingly used, due to intensive development, which needs to operate in multifrequency antennas and broadband. The microstrip antennas have narrow bandwidth due to the dielectric losses generated by irradiation. Another limitation is the degradation of the radiation pattern due to the generation of surface waves in the substrate. Some techniques have been developed to minimize this limitation of bandwidth, such as the study of type materials PBG - Photonic Band Gap, to form the dielectric material. This work has as main objective the development project of a slot resonator with multiple layers and use the type PBG substrate, which carried out the optimization from the numerical analysis and then designed the device initially proposed for the band electromagnetic spectrum between 3-9 GHz, which basically includes the band S to X. Was used as the dielectric material RT/Duroid 5870 and RT/Duroid 6010.LM where both are laminated ceramic-filled PTFE dielectric constants 2.33 and 10.2, respectively. Through an experimental investigation was conducted an analysis of the simulated versus measured by observing the behavior of the radiation characteristics from the height variation of the dielectric multilayer substrates. We also used the LTT method resonators structures rectangular slot with multiple layers of material photonic PBG in order to obtain the resonance frequency and the entire theory involving the electromagnetic parameters of the structure under consideration. xviii The analysis developed in this work was performed using the method LTT - Transverse Transmission Line, in the field of Fourier transform that uses a component propagating in the y direction (transverse to the real direction of propagation z), thus treating the general equations of the fields electric and magnetic and function. The PBG theory is applied to obtain the relative permittivity of the polarizations for the sep photonic composite substrates material. The results are obtained with the commercial software Ansoft HFSS, used for accurate analysis of the electromagnetic behavior of the planar device under study through the Finite Element Method (FEM). Numerical computational results are presented in graphical form in two and three dimensions, playing in the parameters of return loss, frequency of radiation and radiation diagram, radiation efficiency and surface current for the device under study, and have as substrates, photonic materials and had been simulated in an appropriate computational tool. With respect to the planar device design study are presented in the simulated and measured results that show good agreement with measurements made. These results are mainly in the identification of resonance modes and determining the characteristics of the designed device, such as resonant frequency, return loss and radiation pattern

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes design methodologies for frequency selective surfaces (FSSs) composed of periodic arrays of pre-fractals metallic patches on single-layer dielectrics (FR4, RT/duroid). Shapes presented by Sierpinski island and T fractal geometries are exploited to the simple design of efficient band-stop spatial filters with applications in the range of microwaves. Initial results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as, fractal iteration number (or fractal level), fractal iteration factor, and periodicity of FSS, depending on the used pre-fractal element (Sierpinski island or T fractal). The transmission properties of these proposed periodic arrays are investigated through simulations performed by Ansoft DesignerTM and Ansoft HFSSTM commercial softwares that run full-wave methods. To validate the employed methodology, FSS prototypes are selected for fabrication and measurement. The obtained results point to interesting features for FSS spatial filters: compactness, with high values of frequency compression factor; as well as stable frequency responses at oblique incidence of plane waves. This thesis also approaches, as it main focus, the application of an alternative electromagnetic (EM) optimization technique for analysis and synthesis of FSSs with fractal motifs. In application examples of this technique, Vicsek and Sierpinski pre-fractal elements are used in the optimal design of FSS structures. Based on computational intelligence tools, the proposed technique overcomes the high computational cost associated to the full-wave parametric analyzes. To this end, fast and accurate multilayer perceptron (MLP) neural network models are developed using different parameters as design input variables. These neural network models aim to calculate the cost function in the iterations of population-based search algorithms. Continuous genetic algorithm (GA), particle swarm optimization (PSO), and bees algorithm (BA) are used for FSSs optimization with specific resonant frequency and bandwidth. The performance of these algorithms is compared in terms of computational cost and numerical convergence. Consistent results can be verified by the excellent agreement obtained between simulations and measurements related to FSS prototypes built with a given fractal iteration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of flexible materials for the development of planar circuits is one of the most desired and studied characteristics, lately, by researchers. This happens because the flexibility of the substrate can provide previously impracticable applications, due to the rigidity of the substrates normally used that makes it difficult to fit into the circuits in irregular surfaces. The constant interest in recent years for more lighter devices, increasingly more compacts, flexible and with low cost, led to a new line of research of great interest from both academic and technological views, that is the study and development of textile substrates that can be applied in the development of planar circuits, for applications in the areas of security, biomedical and telecommunications. This paper proposes the development of planar circuits, such as antennas , frequency selective surfaces (FSS) and planar filters, using textile (cotton ticking, jeans and brim santista) as the dielectric substrate and the Pure Copper Polyester Taffeta Fabric, a textile of pure copper, highly conductive, lightweight and flexible, commercially sold as a conductive material. The electrical characteristics of textiles (electric permittivity and loss tangent) were characterized using the transmission line method (rectangular waveguide) and compared with those found in the literature. The structures were analyzed using commercial software Ansoft Designer and Ansoft HFSS, both from the company Ansys and for comparison we used the Iterative Method of Waves (WCIP). For the purpose of validation were built and measured several prototypes of antennas, planar filters and FSS, being possible to confirm an excellent agreement between simulated and measured results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this dissertation, consists of the study and analysis of the PBG (Photonic Band Gap )..tecnology incorporated in optical fiber structures. So, we'l1 present a complete PBG structure theory, and folowing this, we'l1 present also a chapter for convencional optical fiber, due to the need to construct the base theory of them, and latter a more complete work about photonic crystal fiber. Finaly, we'l1 show the results of the signals , dispersion, and obtained curves under the right dimensions according to the required signals, for convencional optical and photonic crystal fiber. Knowing that PBG crystals with low losses act as perfect mirrors for forbidden frequences and knowing that the persence of structures of PBG as substrates, brings some desirable characteristics such as spontaneous emition supression and superficial waves. We' 11 show according to these characteristics its applications in telecomunication. Therefore, the enphasis of this work is to show that the optical fibers are the only practible thing to integrate the enormous quantity of data and video at intemet' s market, developing, manipulating, changing, and multiplexing the optical fibers chanels in an area where we expect that the photonic crystals has an important hole, since the photonic crystals can be projected and made to avoid losses in the bands of certain wavelength which permits the increase in efficiency ofthe optical components projected with crystals. A sequence of this work would be the utilisation of the PBG structures in the new system of optical network without fiber developed by Bell laboratories of the lucent tecnology, last year using light rays for transmiting information through the air. The new system of optical networks without fiber will permit sending the data of 15 cd-rooms in less then one second, what represents 65 times more information than those transmitted through the actual radio frequences

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the objectives of this work is the ana1ysis of planar structures using the PBG (photonic Bandgap), a new method of controlling propagation of electromagnetic waves in devices with dielectrics. Here the basic theory of these structures will be presented, as well as applications and determination of certain parameters. In this work the analysis will be performed concerning PBG structures, including the basic theory and applications in planar structures. Considerations are made related to the implementation of devices. Here the TTL (Transverse Transmission Line) method is employed, characterized by the simplicity in the treatment of the equations that govern the propagation of electromagnetic waves in the structure. In this method, the fields in x and z are expressed in function of the fields in the traverse direction y in FTD (Fourier Transform Domain). This method is useful in the determination of the complex propagation constant with application in high frequency and photonics. In this work structures will be approached in micrometric scale operating in frequencies in the range of T erahertz, a first step for operation in the visible spectra. The mathematical basis are approached for the determination of the electromagnetic fields in the structure, based on the method L TT taking into account the dimensions approached in this work. Calculations for the determination of the constant of complex propagation are also carried out. The computational implementation is presented for high frequencies. at the first time the analysis is done with base in open microstrip lines with semiconductor substrate. Finally, considerations are made regarding applications ofthese devices in the area of telecommunications, and suggestions for future

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications this sector. That needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of Ey and Hy. One of the advantages of this method is the simplification of the field equations. therefore the amount of equations lesser must the fields in directions x and z be in function of components Ey and Hy. It will be presented an brief study of the main theories that explain the superconductivity phenomenon. The BCS theory. London Equations and Two Fluids model will be the theories that will give support the application of the superconductors in the microfita antennas. The inclusion of the superconductor patch is made using the resistive complex contour condition. This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular patches, to obtaining the resonance frequency and radiation pattern of each structure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, planar antennas have attracted interest due to its characteristics as well as the advantages they offer compared to other types of antennas. In the area of mobile communications the need for such antennas has become increasingly intense due to development, which requires antennas that operate in multifrequency and broadband. The microstrip antennas have narrow bandwidth due to losses in the dielectric caused by irradiation. Another limitation is the radiation pattern degradation due to generation of surface waves in the substrate. Some techniques are being developed to minimize this bandwidth limitation, as is the case in the study of type materials PBG - Photonic Band Gap, to compose the dielectric material. The analysis developed in this work were performed with use of the method LTT - Transverse Transmission Line, in the field of Fourier transform that uses a component propagating in the y direction (transerve real direction of propagation z), thus treating the general equations of the fields electric and magnetic fields as a functions of y E and Hy . This work has as main objective the method LTT structures resonator line slot with four layers of material photonic PBG, for obtaining the complex resonant frequency and efficiency of this structure. PBG theory is applied to obtain the relative permittivity for the substrate biases sep compounds photonic material. Numerical-computational results in graph form in two dimensions for all the analysis are presented for the proposed structures that have photonic materials, as substrates

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivou-se, neste trabalho, determinar os balanços de radiação e energia da cultura de alface (Lactuca sativa, L. cv. Verônica) em estufa de polietileno. O experimento foi realizado em uma estufa tipo túnel alto com cobertura de polietileno (100 mim de espessura) e em uma área externa, ambas com 35 m². Durante o ciclo da cultura, foram monitoradas as radiações global e refletida, saldo de radiação, fluxo de calor no solo e temperatura do ar (seca e úmida) nos dois meios. Utilizou-se um Datalogger que operou na freqüência de 1 Hz, armazenando médias de cinco minutos. A partir das integrações diárias das irradiâncias global (K¯) e refletida (K­), verificou-se que a transmissividade média da radiação global (K¯in / K¯ex) foi aproximadamente constante, em torno de 79,59%, enquanto a razão das radiações refletidas (K­in / K­ex) foi igual a 69,21% com coeficiente de variação de 8,47%. As curvas normalizadas do saldo de radiação de ondas curtas em relação à radiação global (K* / K¯), nos dois meios, mostraram ser aproximadamente constantes no início do ciclo e decrescentes no final. A relação (Rn/ K¯) foi maior no meio externo, em torno de 12%, a partir da fase em que a superfície verde da cultura cobriu o solo. O balanço médio (L*) de radiação de ondas longas foi maior no exterior, em torno de 50%. O balanço de energia, estimado em termos de fluxos verticais, mostrou, em média, que: no exterior, 83,07% do saldo de radiação foi convertido em calor latente (LE), 18,00% em fluxo de calor no solo (G) e 9,96% em calor sensível (H), enquanto que, no interior da estufa, 58,71% do saldo de radiação foi convertido em LE, 42,68% em H e 28,79% em G.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho objetivou determinar o albedo (r) no espectro solar e estimar o saldo de radiação, em ambientes cultivados com feijão-vagem (Phaseolus vulgaris L.), em condições de campo e em casa de vegetação com cobertura de polietileno, em Botucatu, SP, (22º 54' S; 48º 27' W; 850 m). A irradiância solar global (Rg) e a radiação solar refletida (Rr) foram utilizadas na determinação do albedo através da razão entre Rr e Rg. Curvas diurnas de r foram traçadas para dias com céu parcialmente nublado e claro, em fases fenológicas da cultura. Os valores do albedo diurno, obtidos através dos totais de radiações, foram utilizados para analisar a variação desse índice durante o ciclo da cultura, nos dois ambientes. O albedo variou com a elevação solar, o ambiente e as fases fenológicas da cultura. A variação de nebulosidade praticamente não influiu sobre o albedo, para totais diurnos. As estimativas do saldo de radiação nas fases vegetativa, reprodutiva e no ciclo da cultura, foram realizadas por meio de regressões lineares simples, tendo como variáveis independentes a irradiância solar global (Rg) e o saldo de radiação de ondas curtas (Rc). Todas as estimativas de radiações apresentaram um melhor ajustamento para fases fenológicas que para o ciclo como um todo. O saldo de radiação (Rn), em condições de campo, ficou bem estimado pela irradiância solar global e o saldo de ondas curtas. O saldo de radiação interno (RnI) à casa de vegetação mostrou-se satisfatoriamente estimado pela irradiância global externa (RgE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a method based on the theory of electromagnetic waves reflected to evaluate the behavior of these waves and the level of attenuation caused in bone tissue. For this, it was proposed the construction of two antennas in microstrip structure with resonance frequency at 2.44 GHz The problem becomes relevant because of the diseases osteometabolic reach a large portion of the population, men and women. With this method, the signal is classified into two groups: tissue mass with bony tissues with normal or low bone mass. For this, techniques of feature extraction (Wavelet Transform) and pattern recognition (KNN and ANN) were used. The tests were performed on bovine bone and tissue with chemicals, the methodology and results are described in the work