946 resultados para Numerical error
Resumo:
A mathematical model is developed for gas-solids flows in circulating fluidized beds. An Eulerian formulation is followed based on the two-fluids model approach where both the fluid and the particulate phases are treated as a continuum. The physical modelling is discussed, including the formulation of boundary conditions and the description of the numerical methodology. Results of numerical simulation are presented and discussed. The model is validated through comparison to experiment, and simulation is performed to investigate the effects on the flow hydrodynamics of the solids viscosity.
Resumo:
The Mathematica system (version 4.0) is employed in the solution of nonlinear difusion and convection-difusion problems, formulated as transient one-dimensional partial diferential equations with potential dependent equation coefficients. The Generalized Integral Transform Technique (GITT) is first implemented for the hybrid numerical-analytical solution of such classes of problems, through the symbolic integral transformation and elimination of the space variable, followed by the utilization of the built-in Mathematica function NDSolve for handling the resulting transformed ODE system. This approach ofers an error-controlled final numerical solution, through the simultaneous control of local errors in this reliable ODE's solver and of the proposed eigenfunction expansion truncation order. For covalidation purposes, the same built-in function NDSolve is employed in the direct solution of these partial diferential equations, as made possible by the algorithms implemented in Mathematica (versions 3.0 and up), based on application of the method of lines. Various numerical experiments are performed and relative merits of each approach are critically pointed out.
Resumo:
In this paper we present an algorithm for the numerical simulation of the cavitation in the hydrodynamic lubrication of journal bearings. Despite the fact that this physical process is usually modelled as a free boundary problem, we adopted the equivalent variational inequality formulation. We propose a two-level iterative algorithm, where the outer iteration is associated to the penalty method, used to transform the variational inequality into a variational equation, and the inner iteration is associated to the conjugate gradient method, used to solve the linear system generated by applying the finite element method to the variational equation. This inner part was implemented using the element by element strategy, which is easily parallelized. We analyse the behavior of two physical parameters and discuss some numerical results. Also, we analyse some results related to the performance of a parallel implementation of the algorithm.
Resumo:
This paper presents an HP-Adaptive Procedure with Hierarchical formulation for the Boundary Element Method in 2-D Elasticity problems. Firstly, H, P and HP formulations are defined. Then, the hierarchical concept, which allows a substantial reduction in the dimension of equation system, is introduced. The error estimator used is based on the residual computation over each node inside an element. Finally, the HP strategy is defined and applied to two examples.
Resumo:
The results of a numerical study of premixed Hydrogen-air flows ignition by an oblique shock wave (OSW) stabilized by a wedge are presented, in situations when initial and boundary conditions are such that transition between the initial OSW and an oblique detonation wave (ODW) is observed. More precisely, the objectives of the paper are: (i) to identify the different possible structures of the transition region that exist between the initial OSW and the resulting ODW and (ii) to evidence the effect on the ODW of an abrupt decrease of the wedge angle in such a way that the final part of the wedge surface becomes parallel to the initial flow. For such a geometrical configuration and for the initial and boundary conditions considered, the overdriven detonation supported by the initial wedge angle is found to relax towards a Chapman-Jouguet detonation in the region where the wedge surface is parallel to the initial flow. Computations are performed using an adaptive, unstructured grid, finite volume computer code previously developed for the sake of the computations of high speed, compressible flows of reactive gas mixtures. Physico-chemical properties are functions of the local mixture composition, temperature and pressure, and they are computed using the CHEMKIN-II subroutines.
Resumo:
The formal calibration procedure of a phase fraction meter is based on registering the outputs resulting from imposed phase fractions at known flow regimes. This can be straightforwardly done in laboratory conditions, but is rarely the case in industrial conditions, and particularly for on-site applications. Thus, there is a clear need for less restrictive calibration methods regarding to the prior knowledge of the complete set of inlet conditions. A new procedure is proposed in this work for the on-site construction of the calibration curve from total flown mass values of the homogeneous dispersed phase. The solution is obtained by minimizing a convenient error functional, assembled with data from redundant tests to handle the intrinsic ill-conditioned nature of the problem. Numerical simulations performed for increasing error levels demonstrate that acceptable calibration curves can be reconstructed, even from total mass measured within a precision of up to 2%. Consequently, the method can readily be applied, especially in on-site calibration problems in which classical procedures fail due to the impossibility of having a strict control of all the input/output parameters.
Resumo:
State-of-the-art predictions of atmospheric states rely on large-scale numerical models of chaotic systems. This dissertation studies numerical methods for state and parameter estimation in such systems. The motivation comes from weather and climate models and a methodological perspective is adopted. The dissertation comprises three sections: state estimation, parameter estimation and chemical data assimilation with real atmospheric satellite data. In the state estimation part of this dissertation, a new filtering technique based on a combination of ensemble and variational Kalman filtering approaches, is presented, experimented and discussed. This new filter is developed for large-scale Kalman filtering applications. In the parameter estimation part, three different techniques for parameter estimation in chaotic systems are considered. The methods are studied using the parameterized Lorenz 95 system, which is a benchmark model for data assimilation. In addition, a dilemma related to the uniqueness of weather and climate model closure parameters is discussed. In the data-oriented part of this dissertation, data from the Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite instrument are considered and an alternative algorithm to retrieve atmospheric parameters from the measurements is presented. The validation study presents first global comparisons between two unique satellite-borne datasets of vertical profiles of nitrogen trioxide (NO3), retrieved using GOMOS and Stratospheric Aerosol and Gas Experiment III (SAGE III) satellite instruments. The GOMOS NO3 observations are also considered in a chemical state estimation study in order to retrieve stratospheric temperature profiles. The main result of this dissertation is the consideration of likelihood calculations via Kalman filtering outputs. The concept has previously been used together with stochastic differential equations and in time series analysis. In this work, the concept is applied to chaotic dynamical systems and used together with Markov chain Monte Carlo (MCMC) methods for statistical analysis. In particular, this methodology is advocated for use in numerical weather prediction (NWP) and climate model applications. In addition, the concept is shown to be useful in estimating the filter-specific parameters related, e.g., to model error covariance matrix parameters.
Resumo:
Stochastic differential equation (SDE) is a differential equation in which some of the terms and its solution are stochastic processes. SDEs play a central role in modeling physical systems like finance, Biology, Engineering, to mention some. In modeling process, the computation of the trajectories (sample paths) of solutions to SDEs is very important. However, the exact solution to a SDE is generally difficult to obtain due to non-differentiability character of realizations of the Brownian motion. There exist approximation methods of solutions of SDE. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial, Biology, physical, environmental systems. This Masters' thesis is an introduction and survey of numerical solution methods for stochastic differential equations. Standard numerical methods, local linearization methods and filtering methods are well described. We compute the root mean square errors for each method from which we propose a better numerical scheme. Stochastic differential equations can be formulated from a given ordinary differential equations. In this thesis, we describe two kind of formulations: parametric and non-parametric techniques. The formulation is based on epidemiological SEIR model. This methods have a tendency of increasing parameters in the constructed SDEs, hence, it requires more data. We compare the two techniques numerically.
Resumo:
Electricity price forecasting has become an important area of research in the aftermath of the worldwide deregulation of the power industry that launched competitive electricity markets now embracing all market participants including generation and retail companies, transmission network providers, and market managers. Based on the needs of the market, a variety of approaches forecasting day-ahead electricity prices have been proposed over the last decades. However, most of the existing approaches are reasonably effective for normal range prices but disregard price spike events, which are caused by a number of complex factors and occur during periods of market stress. In the early research, price spikes were truncated before application of the forecasting model to reduce the influence of such observations on the estimation of the model parameters; otherwise, a very large forecast error would be generated on price spike occasions. Electricity price spikes, however, are significant for energy market participants to stay competitive in a market. Accurate price spike forecasting is important for generation companies to strategically bid into the market and to optimally manage their assets; for retailer companies, since they cannot pass the spikes onto final customers, and finally, for market managers to provide better management and planning for the energy market. This doctoral thesis aims at deriving a methodology able to accurately predict not only the day-ahead electricity prices within the normal range but also the price spikes. The Finnish day-ahead energy market of Nord Pool Spot is selected as the case market, and its structure is studied in detail. It is almost universally agreed in the forecasting literature that no single method is best in every situation. Since the real-world problems are often complex in nature, no single model is able to capture different patterns equally well. Therefore, a hybrid methodology that enhances the modeling capabilities appears to be a possibly productive strategy for practical use when electricity prices are predicted. The price forecasting methodology is proposed through a hybrid model applied to the price forecasting in the Finnish day-ahead energy market. The iterative search procedure employed within the methodology is developed to tune the model parameters and select the optimal input set of the explanatory variables. The numerical studies show that the proposed methodology has more accurate behavior than all other examined methods most recently applied to case studies of energy markets in different countries. The obtained results can be considered as providing extensive and useful information for participants of the day-ahead energy market, who have limited and uncertain information for price prediction to set up an optimal short-term operation portfolio. Although the focus of this work is primarily on the Finnish price area of Nord Pool Spot, given the result of this work, it is very likely that the same methodology will give good results when forecasting the prices on energy markets of other countries.
Resumo:
Recently, due to the increasing total construction and transportation cost and difficulties associated with handling massive structural components or assemblies, there has been increasing financial pressure to reduce structural weight. Furthermore, advances in material technology coupled with continuing advances in design tools and techniques have encouraged engineers to vary and combine materials, offering new opportunities to reduce the weight of mechanical structures. These new lower mass systems, however, are more susceptible to inherent imbalances, a weakness that can result in higher shock and harmonic resonances which leads to poor structural dynamic performances. The objective of this thesis is the modeling of layered sheet steel elements, to accurately predict dynamic performance. During the development of the layered sheet steel model, the numerical modeling approach, the Finite Element Analysis and the Experimental Modal Analysis are applied in building a modal model of the layered sheet steel elements. Furthermore, in view of getting a better understanding of the dynamic behavior of layered sheet steel, several binding methods have been studied to understand and demonstrate how a binding method affects the dynamic behavior of layered sheet steel elements when compared to single homogeneous steel plate. Based on the developed layered sheet steel model, the dynamic behavior of a lightweight wheel structure to be used as the structure for the stator of an outer rotor Direct-Drive Permanent Magnet Synchronous Generator designed for high-power wind turbines is studied.
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.
Resumo:
Wind energy has obtained outstanding expectations due to risks of global warming and nuclear energy production plant accidents. Nowadays, wind farms are often constructed in areas of complex terrain. A potential wind farm location must have the site thoroughly surveyed and the wind climatology analyzed before installing any hardware. Therefore, modeling of Atmospheric Boundary Layer (ABL) flows over complex terrains containing, e.g. hills, forest, and lakes is of great interest in wind energy applications, as it can help in locating and optimizing the wind farms. Numerical modeling of wind flows using Computational Fluid Dynamics (CFD) has become a popular technique during the last few decades. Due to the inherent flow variability and large-scale unsteadiness typical in ABL flows in general and especially over complex terrains, the flow can be difficult to be predicted accurately enough by using the Reynolds-Averaged Navier-Stokes equations (RANS). Large- Eddy Simulation (LES) resolves the largest and thus most important turbulent eddies and models only the small-scale motions which are more universal than the large eddies and thus easier to model. Therefore, LES is expected to be more suitable for this kind of simulations although it is computationally more expensive than the RANS approach. With the fast development of computers and open-source CFD software during the recent years, the application of LES toward atmospheric flow is becoming increasingly common nowadays. The aim of the work is to simulate atmospheric flows over realistic and complex terrains by means of LES. Evaluation of potential in-land wind park locations will be the main application for these simulations. Development of the LES methodology to simulate the atmospheric flows over realistic terrains is reported in the thesis. The work also aims at validating the LES methodology at a real scale. In the thesis, LES are carried out for flow problems ranging from basic channel flows to real atmospheric flows over one of the most recent real-life complex terrain problems, the Bolund hill. All the simulations reported in the thesis are carried out using a new OpenFOAM® -based LES solver. The solver uses the 4th order time-accurate Runge-Kutta scheme and a fractional step method. Moreover, development of the LES methodology includes special attention to two boundary conditions: the upstream (inflow) and wall boundary conditions. The upstream boundary condition is generated by using the so-called recycling technique, in which the instantaneous flow properties are sampled on aplane downstream of the inlet and mapped back to the inlet at each time step. This technique develops the upstream boundary-layer flow together with the inflow turbulence without using any precursor simulation and thus within a single computational domain. The roughness of the terrain surface is modeled by implementing a new wall function into OpenFOAM® during the thesis work. Both, the recycling method and the newly implemented wall function, are validated for the channel flows at relatively high Reynolds number before applying them to the atmospheric flow applications. After validating the LES model over simple flows, the simulations are carried out for atmospheric boundary-layer flows over two types of hills: first, two-dimensional wind-tunnel hill profiles and second, the Bolund hill located in Roskilde Fjord, Denmark. For the twodimensional wind-tunnel hills, the study focuses on the overall flow behavior as a function of the hill slope. Moreover, the simulations are repeated using another wall function suitable for smooth surfaces, which already existed in OpenFOAM® , in order to study the sensitivity of the flow to the surface roughness in ABL flows. The simulated results obtained using the two wall functions are compared against the wind-tunnel measurements. It is shown that LES using the implemented wall function produces overall satisfactory results on the turbulent flow over the two-dimensional hills. The prediction of the flow separation and reattachment-length for the steeper hill is closer to the measurements than the other numerical studies reported in the past for the same hill geometry. The field measurement campaign performed over the Bolund hill provides the most recent field-experiment dataset for the mean flow and the turbulence properties. A number of research groups have simulated the wind flows over the Bolund hill. Due to the challenging features of the hill such as the almost vertical hill slope, it is considered as an ideal experimental test case for validating micro-scale CFD models for wind energy applications. In this work, the simulated results obtained for two wind directions are compared against the field measurements. It is shown that the present LES can reproduce the complex turbulent wind flow structures over a complicated terrain such as the Bolund hill. Especially, the present LES results show the best prediction of the turbulent kinetic energy with an average error of 24.1%, which is a 43% smaller than any other model results reported in the past for the Bolund case. Finally, the validated LES methodology is demonstrated to simulate the wind flow over the existing Muukko wind farm located in South-Eastern Finland. The simulation is carried out only for one wind direction and the results on the instantaneous and time-averaged wind speeds are briefly reported. The demonstration case is followed by discussions on the practical aspects of LES for the wind resource assessment over a realistic inland wind farm.
Resumo:
The effect of the tip clearance and vaneless diffuser width on the stage performance and flow fields of a centrifugal compressor were studied numerically and results were compared to the experimental measurements. The diffuser width was changed by moving the shroud side of the diffuser axially and six tip clearances size from 0.5 to 3 mm were studied. Moreover, the effects of rotor-stator interaction on the diffuser and impeller flow fields and performance were studied. Also transient simulations were carried out in order to investigate the influence of the interaction on the impeller and diffuser performance parameters. It was seen that pinch could improve the performance and it help to get more uniform flow at exit and less back flow from diffuser to the impeller.
Resumo:
The cosmological standard view is based on the assumptions of homogeneity, isotropy and general relativistic gravitational interaction. These alone are not sufficient for describing the current cosmological observations of accelerated expansion of space. Although general relativity is extremely accurately tested to describe the local gravitational phenomena, there is a strong demand for modifying either the energy content of the universe or the gravitational interaction itself to account for the accelerated expansion. By adding a non-luminous matter component and a constant energy component with negative pressure, the observations can be explained with general relativity. Gravitation, cosmological models and their observational phenomenology are discussed in this thesis. Several classes of dark energy models that are motivated by theories outside the standard formulation of physics were studied with emphasis on the observational interpretation. All the cosmological models that seek to explain the cosmological observations, must also conform to the local phenomena. This poses stringent conditions for the physically viable cosmological models. Predictions from a supergravity quintessence model was compared to Supernova 1a data and several metric gravity models were studied with local experimental results. Polytropic stellar configurations of solar, white dwarf and neutron stars were numerically studied with modified gravity models. The main interest was to study the spacetime around the stars. The results shed light on the viability of the studied cosmological models.