999 resultados para Nuclear Physics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neutron multidetector DéMoN has been used to investigate the symmetric splitting dynamics in the reactions 58.64Ni + 208Pb with excitation energies ranging from 65 to 186 MeV for the composite system. An analysis based on the new backtracing technique has been applied on the neutron data to determine the two-dimensional correlations between the parent composite system initial thermal energy (EthCN) and the total neutron multiplicity (νtot), and between pre- and post-scission neutron multiplicities (νpre and νpost, respectively). The νpre distribution shape indicates the possible coexistence of fast-fission and fusion-fission for the system 58Ni + 208Pb (Ebeam = 8.86 A MeV). The analysis of the neutron multiplicities in the framework of the combined dynamical statistical model (CDSM) gives a reduced friction coefficient β = 23 ± 2512 × 1021 s-1, above the one-body dissipation limit. The corresponding fission time is τf = 40 ± 4620 × 10-21 s. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of a strong magnetic field on the neutron-drip transition in the crust of a magnetar is studied. The composition of the crust and the neutron-drip threshold are determined numerically for different magnetic field strengths using the experimental atomic mass measurements from the 2012 Atomic Mass Evaluation complemented with theoretical masses calculated from the Brussels-Montreal Hartree-Fock-Bogoliubov nuclear mass model HFB-24. The equilibrium nucleus at the neutron-drip point is found to be independent of the magnetic field strength. As demonstrated analytically, the neutron-drip density and pressure increase almost linearly with the magnetic field strength in the strongly quantizing regime for which electrons lie in the lowest Landau level. For weaker magnetic fields, the neutron-drip density exhibits typical quantum oscillations. In this case, the neutron-drip density can be either increased by about 14% or decreased by 25% depending on the magnetic field strength. These variations are shown to be almost universal, independently of the nuclear mass model employed. These results may have important implications for the physical interpretation of timing irregularities and quasiperiodic oscillations detected in soft gamma-ray repeaters and anomalous x-ray pulsars, as well as for the cooling of strongly magnetized neutron stars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite their astrophysical significanceas a major contributor to cosmic nucleosynthesis and as distance indicators in observational cosmologyType Ia supernovae lack theoretical explanation. Not only is the explosion mechanism complex due to the interaction of (potentially turbulent) hydrodynamics and nuclear reactions, but even the initial conditions for the explosion are unknown. Various progenitor scenarios have been proposed. After summarizing some general aspects of Type Ia supernova modeling, recent simulations of our group are discussed. With a sequence of modeling starting (in some cases) from the progenitor evolution and following the explosion hydrodynamics and nucleosynthesis we connect to the formation of the observables through radiation transport in the ejecta cloud. This allows us to analyze several models and to compare their outcomes with observations. While pure deflagrations of Chandrasekhar-mass white dwarfs and violent mergers of two white dwarfs lead to peculiar events (that may, however, find their correspondence in the observed sample of SNe Ia), only delayed detonations in Chandrasekhar-mass white dwarfs or sub-Chandrasekhar-mass explosions remain promising candidates for explaining normal Type Ia supernovae. © 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a leading facility in laser-driven nuclear physics, ELI-NP will develop innovative research in the fields of materials behavior in extreme environments and radiobiology, with applications in the development of accelerator components, new materials for next generation fusion and fission reactors, shielding solutions for equipment and human crew in long term space missions and new biomedical technologies. The specific properties of the laser-driven radiation produced with two lasers of 1 PW at a pulse repetition rate of 1 Hz each are an ultra-short time scale, a relatively broadband spectrum and the possibility to provide simultaneously several types of radiation. Complex, cosmic-like radiation will be produced in a ground-based laboratory allowing comprehensive investigations of their effects on materials and biological systems. The expected maximum energy and intensity of the radiation beams are 19 MeV with 10^9 photon/pulse for photon radiation, 2 GeV with 108 electron/pulse for electron beams, 60 MeV with 10^12 proton/pulse for proton and ion beams and 60 MeV with 107 neutron/pulse for a neutron source. Research efforts will be directed also towards measurements for radioprotection of the prompt and activated dose, as a function of laser and target characteristics and to the development and testing of various dosimetric methods and equipment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, História e Filosofia das Ciências, Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperature dependent resistivity, p, magnetic susceptibility, X, and far-infrared reflectance measurements were made on the low Tc superconductor UBe13. Two variants of UBe13 have been proposed, named 'L'- (for low Tc ) and 'H'-type (for high Tc ). Low temperature resistivity measurements confirmed that our sample was of H-type and that the transition temperature was at 0.9 K. This was further confirmed with the observation of this transition in the AC-susceptibility. Low temperature reflectance measurements showed a decrease in the reflectivity as the temperature is lowered from 300 to 10 K, which is in qualitative agreement with the increasing resistivity in this temperature range as temperature is lowered. No dramatic change in the reflectivity was observed between 10 and 0.75 K. A further decrease of the reflectance was observed for the temperature of 0.5 K. The calculated optical conductivity shows a broad minimum near 80 cm-1 below 45 K. Above 45 K the conductivity is relatively featureless. As the temperature is lowered, the optical conductivity decreases. The frequency dependent scattering rate was found to be flat for temperatures between 300 and 45 K. The development of a peak, at around 70 cm-1 was found for temperatures of 45 K and below. This peak has been associated with the energy at which the transition to a coherent state occurs from single impurity scattering in other heavy fermion systems. The frequency dependent mass enhancement coefficient was found to increase at low frequencies as the frequency decreases. Its' magnitude as frequency approaches zero also increased as the temperature decreased.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optical response to far infrared radiation has been measured on a mosaic of heavy fermion CeColnssingle crystals. The superconducting transition temperature of the crystals has been determined by van der Pauw resistivity and ac-susceptibility measurements as Tc = 2.3 K. The optical measurements were taken above and below the transition temperature using a 3He cryostat and step and integrate Martin-Puplett type polarizing interferometer. The absolute reflectance of the heavy fermion CeColns in the superconducting state in range (0, 100)cm-1 was calculated from the measured thermal reflectance, using the normal state data of Singley et al and a low frequency extrapolation for a metallic material in the Hagen-Rubens regime. By means of Kramers-Kronig analysis the absolute reflectance was used to calculate the optical conductivity of the sample. The real part of the calculated complex conductivity 0-(w) ofCeColns indicates a possible opening of an energy gap close to 50 em-I.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research undertaken was to obtain absolute Raman intensities for the symmetric stretching vibrations of the methyl halides, CH3X with (X=F, CI, Br), by experiment and theory. The intensities were experimentally measured using the Ar+ ion gas laser as excitation source, a Spex 14018 double monochromator and a RCA C-31034 photomultiplier tube as detector. These intensities arise from changes in the derivative of the polarizability (8 a'), with respect to vibration along a normal coordinate (8qi). It was intended that these derivatives obtained with respect to normal coordinates would be converted to derivatives with respect to internal coordinates, for a quantitative comparison with theory. Theoretical numerical polarizability derivatives for the stretching vibrations are obtained using the following procedure. A vibration was simulated in the molecule by increasi.ng and decreasing the respective bond by the amount ±o.oosA for the C-H bonds and ±o.oIA for the C-X (X=F, CI, Br) bond. The derivative was obtained by taking the difference in the polarizability for the equilibrium geometry and the geometry when a particular bond is changed. This difference, when divided by the amount of change in each bond and the number of bonds present results in the derivative of the polarizability with respect to internal coordinate i.e., !1u/!1r. These derivatives were obtained by two methods: I} ab initio molecular orbital calculation and 2} theory of atoms in molecules (AIM) analysis. Due to errors in the experimental setup only a qualitative analysis of the results was undertaken relative to the theory. Theoretically it is predicted that the symmetric carbonhalogen stretch vibrations are more intense than the respective carbon-hydrogen stretch, but only for the methyl chloride and bromide. The carbon fluorine stretch is less intense than the carbon-hydrogen stretch, a fact which is attributed to the small size and high electronegativity of the fluorine atom. The experimental observations are seen to agree qualitatively with the theory results. It is hoped that when the experiment is repeated, a quantitative comparison can be made. The analysis by the theory of atoms in molecules, along with providing polarizabilities and polarizability derivatives, gives additional information outlined below. The theory provides a pictorial description of the main factors contributing to the molecular polarizability and polarizability derivative. These contributions are from the charge transfer and atomic dipole terms i.e., transfer of charge from one atom to another and the reorganization of atomic electronic charge distribution due to presence of an electric field. The linear relationship between polarizability and molecular volume was also observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our objective is to develop a diffusion Monte Carlo (DMC) algorithm to estimate the exact expectation values, ($o|^|^o), of multiplicative operators, such as polarizabilities and high-order hyperpolarizabilities, for isolated atoms and molecules. The existing forward-walking pure diffusion Monte Carlo (FW-PDMC) algorithm which attempts this has a serious bias. On the other hand, the DMC algorithm with minimal stochastic reconfiguration provides unbiased estimates of the energies, but the expectation values ($o|^|^) are contaminated by ^, an user specified, approximate wave function, when A does not commute with the Hamiltonian. We modified the latter algorithm to obtain the exact expectation values for these operators, while at the same time eliminating the bias. To compare the efficiency of FW-PDMC and the modified DMC algorithms we calculated simple properties of the H atom, such as various functions of coordinates and polarizabilities. Using three non-exact wave functions, one of moderate quality and the others very crude, in each case the results are within statistical error of the exact values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optical response to far infrared radiation has been measured on a mosaic of heavy fermion CeCoIns single crystals. The superconducting transition temperature of the crystals has been determined by van der Pauw resistivity and ac-susceptibility measurements as Tc = 2.3 K. The optical measurements were taken above and below the transition temperature using a ^He cryostat and step and integrate Martin-Puplett type polarizing interferometer. The absolute reflectance of the heavy fermion CeCoIns in the superconducting state in range (0, 100)cm~^ was calculated from the measured thermal reflectance, using the normal state data of Singley et al and a low frequency extrapolation for a metallic material in the Hagen-Rubens regime. By means of Kramers-Kronig analysis the absolute reflectance was used to calculate the optical conductivity of the sample. The real part of the calculated complex conductivity a{u)) of CeCoIns indicates a possible opening of an energy gap close to 50 cm~^.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Two-Connected Network with Bounded Ring (2CNBR) problem is a network design problem addressing the connection of servers to create a survivable network with limited redirections in the event of failures. Particle Swarm Optimization (PSO) is a stochastic population-based optimization technique modeled on the social behaviour of flocking birds or schooling fish. This thesis applies PSO to the 2CNBR problem. As PSO is originally designed to handle a continuous solution space, modification of the algorithm was necessary in order to adapt it for such a highly constrained discrete combinatorial optimization problem. Presented are an indirect transcription scheme for applying PSO to such discrete optimization problems and an oscillating mechanism for averting stagnation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the spectrum and magnetic properties of double quantum dots in the lowest Landau level for different values of the hopping and Zeeman parameters by means of exact diagonalization techniques in systems of N=6 and 7 electrons and a filling factor close to 2. We compare our results with those obtained in double quantum layers and single quantum dots. The Kohn theorem is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interplay between Rashba, Dresselhaus, and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum-rule approach. This solution allows us to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.