945 resultados para Nose reconstruction
Resumo:
This paper presents a new paradigm for signal reconstruction and superresolution, Correlation Kernel Analysis (CKA), that is based on the selection of a sparse set of bases from a large dictionary of class- specific basis functions. The basis functions that we use are the correlation functions of the class of signals we are analyzing. To choose the appropriate features from this large dictionary, we use Support Vector Machine (SVM) regression and compare this to traditional Principal Component Analysis (PCA) for the tasks of signal reconstruction, superresolution, and compression. The testbed we use in this paper is a set of images of pedestrians. This paper also presents results of experiments in which we use a dictionary of multiscale basis functions and then use Basis Pursuit De-Noising to obtain a sparse, multiscale approximation of a signal. The results are analyzed and we conclude that 1) when used with a sparse representation technique, the correlation function is an effective kernel for image reconstruction and superresolution, 2) for image compression, PCA and SVM have different tradeoffs, depending on the particular metric that is used to evaluate the results, 3) in sparse representation techniques, L_1 is not a good proxy for the true measure of sparsity, L_0, and 4) the L_epsilon norm may be a better error metric for image reconstruction and compression than the L_2 norm, though the exact psychophysical metric should take into account high order structure in images.
Resumo:
Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach
Resumo:
Resumen tomado del autor. Resumen del autor también en inglés. Monográfico titulado: La REEC cumple 10 años. La Educación Comparada entre los siglos (1995-2005)
Resumo:
A reconstruction of the Atlantic Meridional Overturning Circulation (MOC) for the period 1959–2006 has been derived from the ECMWF operational ocean reanalysis. The reconstruction shows a wide range of time-variability, including a downward trend. At 26N, both the MOC intensity and changes in its vertical structure are in good agreement with previous estimates based on trans-Atlantic surveys. At 50N, the MOC and strength of the subpolar gyre are correlated at interannual time scales, but show opposite secular trends. Heat transport variability is highly correlated with the MOC but shows a smaller trend due to the warming of the upper ocean, which partially compensates for the weakening of the circulation. Results from sensitivity experiments show that although the time-varying upper boundary forcing provides useful MOC information, the sequential assimilation of ocean data further improves the MOC estimation by increasing both the mean and the time variability.
Resumo:
This study examines the efficacy of published δ18O data from the calcite of Late Miocene surface dwelling planktonic foraminifer shells, for sea surface temperature estimates for the pre-Quaternary. The data are from 33 Late Miocene (Messinian) marine sites from a modern latitudinal gradient of 64°N to 48°S. They give estimates of SSTs in the tropics/subtropics (to 30°N and S) that are mostly cooler than present. Possible causes of this temperature discrepancy are ecological factors (e.g. calcification of shells at levels below the ocean mixed layer), taphonomic effects (e.g. diagenesis or dissolution), inaccurate estimation of Late Miocene seawater oxygen isotope composition, or a real Late Miocene cool climate. The scale of apparent cooling in the tropics suggests that the SST signal of the foraminifer calcite has been reset, at least in part, by early diagenetic calcite with higher δ18O, formed in the foraminifer shells in cool sea bottom pore waters, probably coupled with the effects of calcite formed below the mixed layer during the life of the foraminifera. This hypothesis is supported by the markedly cooler SST estimates from low latitudes—in some cases more than 9 °C cooler than present—where the gradients of temperature and the δ18O composition of seawater between sea surface and sea bottom are most marked, and where ocean surface stratification is high. At higher latitudes, particularly N and S of 30°, the temperature signal is still cooler, though maximum temperature estimates overlap with modern SSTs N and S of 40°. Comparison of SST estimates for the Late Miocene from alkenone unsaturation analysis from the eastern tropical Atlantic at Ocean Drilling Program (ODP) Site 958—which suggest a warmer sea surface by 2–4 °C, with estimates from oxygen isotopes at Deep Sea Drilling Project (DSDP) Site 366 and ODP Site 959, indicating cooler than present SSTs, also suggest a significant impact on the δ18O signal. Nevertheless, much of the original SST variation is clearly preserved in the primary calcite formed in the mixed layer, and records secular and temporal oceanographic changes at the sea surface, such as movement of the Antarctic Polar Front in the Southern Ocean. Cooler SSTs in the tropics and sub-tropics are also consistent with the Late Miocene latitude reduction in the coral reef belt and with interrupted reef growth on the Queensland Plateau of eastern Australia, though it is not possible to quantify absolute SSTs with the existing oxygen isotope data. Reconstruction of an accurate global SST dataset for Neogene time-slices from the existing published DSDP/ODP isotope data, for use in general circulation models, may require a detailed re-assessment of taphonomy at many sites.
Resumo:
This study examines the efficacy of published δ18O data from the calcite of Late Miocene surface dwelling planktonic foraminifer shells, for sea surface temperature estimates for the pre-Quaternary. The data are from 33 Late Miocene (Messinian) marine sites from a modern latitudinal gradient of 64°N to 48°S. They give estimates of SSTs in the tropics/subtropics (to 30°N and S) that are mostly cooler than present. Possible causes of this temperature discrepancy are ecological factors (e.g. calcification of shells at levels below the ocean mixed layer), taphonomic effects (e.g. diagenesis or dissolution), inaccurate estimation of Late Miocene seawater oxygen isotope composition, or a real Late Miocene cool climate. The scale of apparent cooling in the tropics suggests that the SST signal of the foraminifer calcite has been reset, at least in part, by early diagenetic calcite with higher δ18O, formed in the foraminifer shells in cool sea bottom pore waters, probably coupled with the effects of calcite formed below the mixed layer during the life of the foraminifera. This hypothesis is supported by the markedly cooler SST estimates from low latitudes—in some cases more than 9 °C cooler than present—where the gradients of temperature and the δ18O composition of seawater between sea surface and sea bottom are most marked, and where ocean surface stratification is high. At higher latitudes, particularly N and S of 30°, the temperature signal is still cooler, though maximum temperature estimates overlap with modern SSTs N and S of 40°. Comparison of SST estimates for the Late Miocene from alkenone unsaturation analysis from the eastern tropical Atlantic at Ocean Drilling Program (ODP) Site 958—which suggest a warmer sea surface by 2–4 °C, with estimates from oxygen isotopes at Deep Sea Drilling Project (DSDP) Site 366 and ODP Site 959, indicating cooler than present SSTs, also suggest a significant impact on the δ18O signal. Nevertheless, much of the original SST variation is clearly preserved in the primary calcite formed in the mixed layer, and records secular and temporal oceanographic changes at the sea surface, such as movement of the Antarctic Polar Front in the Southern Ocean. Cooler SSTs in the tropics and sub-tropics are also consistent with the Late Miocene latitude reduction in the coral reef belt and with interrupted reef growth on the Queensland Plateau of eastern Australia, though it is not possible to quantify absolute SSTs with the existing oxygen isotope data. Reconstruction of an accurate global SST dataset for Neogene time-slices from the existing published DSDP/ODP isotope data, for use in general circulation models, may require a detailed re-assessment of taphonomy at many sites.