941 resultados para Non-autonomous dynamical systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an algorithm for the computation of reducible invariant tori of discrete dynamical systems that is suitable for tori of dimensions larger than 1. It is based on a quadratically convergent scheme that approximates, at the same time, the Fourier series of the torus, its Floquet transformation, and its Floquet matrix. The Floquet matrix describes the linearization of the dynamics around the torus and, hence, its linear stability. The algorithm presents a high degree of parallelism, and the computational effort grows linearly with the number of Fourier modes needed to represent the solution. For these reasons it is a very good option to compute quasi-periodic solutions with several basic frequencies. The paper includes some examples (flows) to show the efficiency of the method in a parallel computer. In these flows we compute invariant tori of dimensions up to 5, by taking suitable sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a model for transport in multiply scattering media based on a three-dimensional generalization of the persistent random walk. The model assumes that photons move along directions that are parallel to the axes. Although this hypothesis is not realistic, it allows us to solve exactly the problem of multiple scattering propagation in a thin slab. Among other quantities, the transmission probability and the mean transmission time can be calculated exactly. Besides being completely solvable, the model could be used as a benchmark for approximation schemes to multiple light scattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concepts of dissipation and feedback are contained in the behavior of many natural dynamical systems. They have been used to predict the evolution of populations leading to the formulation of the quadratic logistic equation (QLE). More recently, the QLE has been used to provide a better understanding of physicochemical systems with promising results. Many physical, chemical and biological dynamic phenomena can be understood on the basis of the QLE and this work describes the main aspects of this equation and some recent applications, with emphasis on electrochemical systems. Also, it is illustrated the concept of potential energy as a convenient way of describing the stability of the fixed points of the QLE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differences in dimensionality of electroencephalogram during awake and deeper sleep stages. The nonlinear dynamical systems theory provides some tools for the analysis of electroencephalogram (EEG) at different sleep stages. Its use could allow the automatic monitoring of the states of the sleep and it would also contribute an explanatory level of the differences between stages. The goal of the present paper is to address this type of analysis, focusing on the most different stages. Estimations of dimensionality were compared when six subjects were awake and in a deep sleep stage. Greater dimensionality involves more complexity because the system receives more external influences. If this dimensionality is maximum, we can consider that the time series is a noisy one. A smaller dimensionality involves lower complexity because the system receives fewer inputs. We hypothesized that we would find greater dimensionality when subjects were awake than in a deep sleep stage. Results show a noisy time series during the awake stage, whereas in the sleep stage, dimensionality is smaller, confirming our hypothesis. This result is similar to the findings reached previously by other authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a result of the growing interest in studying employee well-being as a complex process that portrays high levels of within-individual variability and evolves over time, this present study considers the experience of flow in the workplace from a nonlinear dynamical systems approach. Our goal is to offer new ways to move the study of employee well-being beyond linear approaches. With nonlinear dynamical systems theory as the backdrop, we conducted a longitudinal study using the experience sampling method and qualitative semi-structured interviews for data collection; 6981 registers of data were collected from a sample of 60 employees. The obtained time series were analyzed using various techniques derived from the nonlinear dynamical systems theory (i.e., recurrence analysis and surrogate data) and multiple correspondence analyses. The results revealed the following: 1) flow in the workplace presents a high degree of within-individual variability; this variability is characterized as chaotic for most of the cases (75%); 2) high levels of flow are associated with chaos; and 3) different dimensions of the flow experience (e.g., merging of action and awareness) as well as individual (e.g., age) and job characteristics (e.g., job tenure) are associated with the emergence of different dynamic patterns (chaotic, linear and random).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the techniques used to detect faults in dynamic systems is analytical redundancy. An important difficulty in applying this technique to real systems is dealing with the uncertainties associated with the system itself and with the measurements. In this paper, this uncertainty is taken into account by the use of intervals for the parameters of the model and for the measurements. The method that is proposed in this paper checks the consistency between the system's behavior, obtained from the measurements, and the model's behavior; if they are inconsistent, then there is a fault. The problem of detecting faults is stated as a quantified real constraint satisfaction problem, which can be solved using the modal interval analysis (MIA). MIA is used because it provides powerful tools to extend the calculations over real functions to intervals. To improve the results of the detection of the faults, the simultaneous use of several sliding time windows is proposed. The result of implementing this method is semiqualitative tracking (SQualTrack), a fault-detection tool that is robust in the sense that it does not generate false alarms, i.e., if there are false alarms, they indicate either that the interval model does not represent the system adequately or that the interval measurements do not represent the true values of the variables adequately. SQualTrack is currently being used to detect faults in real processes. Some of these applications using real data have been developed within the European project advanced decision support system for chemical/petrochemical manufacturing processes and are also described in this paper

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis contains dynamical analysis on four different scales: the Solar system, the Sun itself, the Solar neighbourhood, and the central region of the Milky Way galaxy. All of these topics have been handled through methods of potential theory and statistics. The central topic of the thesis is the orbits of stars in the Milky Way. An introduction into the general structure of the Milky Way is presented, with an emphasis on the evolution of the observed value for the scale-length of the Milky Way disc and the observations of two separate bars in the Milky Way. The basics of potential theory are also presented, as well as a developed potential model for the Milky Way. An implementation of the backwards restricted integration method is shown, rounding off the basic principles used in the dynamical studies of this thesis. The thesis looks at the orbit of the Sun, and its impact on the Oort cloud comets (Paper IV), showing that there is a clear link between these two dynamical systems. The statistical atypicalness of the orbit of the Sun is questioned (Paper I), concluding that there is some statistical typicalness to the orbit of the Sun, although it is not very significant. This does depend slightly on whether one includes a bar, or not, as a bar has a clear effect on the dynamical features seen in the Solar neighbourhood (Paper III). This method can be used to find the possible properties of a bar. Finally, we look at the effect of a bar on a statistical system in the Milky Way, seeing that there are not only interesting effects depending on the mass and size of the bar, but also how bars can capture disc stars (Paper II).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parameters such as tolerance, scale and agility utilized in data sampling for using in Precision Agriculture required an expressive number of researches and development of techniques and instruments for automation. It is highlighted the employment of methodologies in remote sensing used in coupled to a Geographic Information System (GIS), adapted or developed for agricultural use. Aiming this, the application of Agricultural Mobile Robots is a strong tendency, mainly in the European Union, the USA and Japan. In Brazil, researches are necessary for the development of robotics platforms, serving as a basis for semi-autonomous and autonomous navigation systems. The aim of this work is to describe the project of an experimental platform for data acquisition in field for the study of the spatial variability and development of agricultural robotics technologies to operate in agricultural environments. The proposal is based on a systematization of scientific work to choose the design parameters utilized for the construction of the model. The kinematic study of the mechanical structure was made by the virtual prototyping process, based on modeling and simulating of the tension applied in frame, using the.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some properties of generalized canonical systems - special dynamical systems described by a Hamiltonian function linear in the adjoint variables - are applied in determining the solution of the two-dimensional coast-arc problem in an inverse-square gravity field. A complete closed-form solution for Lagrangian multipliers - adjoint variables - is obtained by means of such properties for elliptic, circular, parabolic and hyperbolic motions. Classic orbital elements are taken as constants of integration of this solution in the case of elliptic, parabolic and hyperbolic motions. For circular motion, a set of nonsingular orbital elements is introduced as constants of integration in order to eliminate the singularity of the solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaotic dynamical systems exhibit trajectories in their phase space that converges to a strange attractor. The strangeness of the chaotic attractor is associated with its dimension in which instance it is described by a noninteger dimension. This contribution presents an overview of the main definitions of dimension discussing their evaluation from time series employing the correlation and the generalized dimension. The investigation is applied to the nonlinear pendulum where signals are generated by numerical integration of the mathematical model, selecting a single variable of the system as a time series. In order to simulate experimental data sets, a random noise is introduced in the time series. State space reconstruction and the determination of attractor dimensions are carried out regarding periodic and chaotic signals. Results obtained from time series analyses are compared with a reference value obtained from the analysis of mathematical model, estimating noise sensitivity. This procedure allows one to identify the best techniques to be applied in the analysis of experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High dimensional dynamical systems has intricate behavior either on temporal or on spatial evolution properties. Nevertheless, most of the work on chaotic dynamics has been concentrated on temporal behavior of low-dimensional systems. This contribution is concerned with the chaotic response of a two-degree of freedom Duffing oscillator. Since the equations of motion are associated with a five-dimensional system, the analysis is performed by considering two Duffing oscillators, both with single-degree of freedom, coupled by a spring-dashpot system. With this assumption, it is possible to analyze the transmissibility of motion between the two oscillators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaotic behaviour is one of the hardest problems that can happen in nonlinear dynamical systems with severe nonlinearities. It makes the system's responses unpredictable. It makes the system's responses to behave similar to noise. In some applications it should be avoided. One of the approaches to detect the chaotic behaviour is nding the Lyapunov exponent through examining the dynamical equation of the system. It needs a model of the system. The goal of this study is the diagnosis of chaotic behaviour by just exploring the data (signal) without using any dynamical model of the system. In this work two methods are tested on the time series data collected from AMB (Active Magnetic Bearing) system sensors. The rst method is used to nd the largest Lyapunov exponent by Rosenstein method. The second method is a 0-1 test for identifying chaotic behaviour. These two methods are used to detect if the data is chaotic. By using Rosenstein method it is needed to nd the minimum embedding dimension. To nd the minimum embedding dimension Cao method is used. Cao method does not give just the minimum embedding dimension, it also gives the order of the nonlinear dynamical equation of the system and also it shows how the system's signals are corrupted with noise. At the end of this research a test called runs test is introduced to show that the data is not excessively noisy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological systems are complex dynamical systems whose relationships with environment have strong implications on their regulation and survival. From the interactions between plant and environment can emerge a quite complex network of plant responses rarely observed through classical analytical approaches. The objective of this current study was to test the hypothesis that photosynthetic responses of different tree species to increasing irradiance are related to changes in network connectances of gas exchange and photochemical apparatus, and alterations in plant autonomy in relation to the environment. The heat dissipative capacity through daily changes in leaf temperature was also evaluated. It indicated that the early successional species (Citharexylum myrianthum Cham. and Rhamnidium elaeocarpum Reiss.) were more efficient as dissipative structures than the late successional one (Cariniana legalis (Mart.) Kuntze), suggesting that the parameter deltaT (T ºCair - T ºCleaf) could be a simple tool in order to help the classification of successional classes of tropical trees. Our results indicated a pattern of network responses and autonomy changes under high irradiance. Considering the maintenance of daily CO2 assimilation, the tolerant species (C. myrianthum and R. elaeocarpum) to high irradiance trended to maintain stable the level of gas exchange network connectance and to increase the autonomy in relation to the environment. On the other hand, the late successional species (C. legalis) trended to lose autonomy, decreasing the network connectance of gas exchange. All species showed lower autonomy and higher network connectance of the photochemical apparatus under high irradiance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since its discovery, chaos has been a very interesting and challenging topic of research. Many great minds spent their entire lives trying to give some rules to it. Nowadays, thanks to the research of last century and the advent of computers, it is possible to predict chaotic phenomena of nature for a certain limited amount of time. The aim of this study is to present a recently discovered method for the parameter estimation of the chaotic dynamical system models via the correlation integral likelihood, and give some hints for a more optimized use of it, together with a possible application to the industry. The main part of our study concerned two chaotic attractors whose general behaviour is diff erent, in order to capture eventual di fferences in the results. In the various simulations that we performed, the initial conditions have been changed in a quite exhaustive way. The results obtained show that, under certain conditions, this method works very well in all the case. In particular, it came out that the most important aspect is to be very careful while creating the training set and the empirical likelihood, since a lack of information in this part of the procedure leads to low quality results.