997 resultados para Nmr Spectrometry
Resumo:
本论文由四部分组成。第一部分报道了佛手参提取物的化学成分研究,建立了活性成分含量测定的高效液相测定和指纹图谱研究,采用液质联用技术鉴定了主要色谱峰;第二部分报道了丹参及其复方制剂的特征图谱研究;第三部分探讨了两面针生物碱的电喷雾质谱裂解规律,并采用液质联用技术分离鉴定了提取物中的多种生物碱。第四部分概述了液质联用在药物代谢研究中的运用。 第一部分包括第一、第二和第三章。第一章针对佛手参(Gymnadeniaconopsea)块茎的甲醇提取物,采用大孔树脂和反相硅胶柱层析等各种分离方法,共分离鉴定出4 个化合物,通过波谱分析将它们的结构确定为dactylorhin B (1)、loroglossin (2)、dactylorhin A (3)和militarine (4)。这4 个化合物均是首次从佛手参中分离得到的琥珀酸葡萄糖苷类成分。第二章采用高效液相色谱法对西藏、四川、河北、青海和尼泊尔等不同地区产的十个佛手参样品进行腺嘌呤核苷和对羟基苯甲醇的定量分析,结果表明这2 个成份可视为佛手参的特征成分,但也注意到产地不同该2 个特征成分的含量也有所不同。第三章采用标准中药指纹图谱相似度计算软件,以10 个佛手参样品HPLC 图谱的平均值为相似性评价对照模板,对10 个样品进行了相似度评价,并经液质联用分析指认了7 个共有峰,分别为腺嘌呤核苷(1)、对羟基苯甲醇(2)、对羟基苯甲醛(3) 、dactylorhin B(4) 、loroglossin(5)、dactylorhin A(6)和militarine(7)。 第二部分包括第四、第五、第六和第七章。第四章运用电喷雾质谱检测了对照药材和五个不同产地的丹参药材中脂溶性和水溶性成分,系统地探讨了多种成分的电喷雾质谱规律,并以对照药材为标准建立了特征指纹图谱。五个产地的药II材通过与对照药材相对比,采用聚类分析的方法,得到了定性的鉴别与判断。并采用液质联用技术对丹参药材提取液中的化学成份进行分析,推测了九个特征峰,并对六样品的液相色谱图进行了聚类分析。第五章探讨了三七皂苷的电喷雾质谱电离和裂解规律,并采用电喷雾质谱法对三七标准药材,血通片中的皂苷成分进行了分析。第六章运用电喷雾质谱研究复方丹参片提取液的特征图谱,并和单味药材丹参和三七的特征图谱进行了对比研究。并运用HPLC-ESI MSn 分析鉴定了复方丹参片提取液中的化学成分,推测了12 个色谱峰。第七章总结了电喷雾质谱和液质联用技术在丹参药材,三七药材及复方丹参制剂中的运用的优势和局限性。 第三部分(第八章)研究了两面针生物碱中二氢白屈菜红碱(1)、二氢两面针碱(2)、8-酮基二氢白屈菜红碱(3)、8-丙酮基二氢两面针碱(4)、两面针碱(5)、和1,3-二(8-二氢两面针碱)丙酮(6)等六个苯并菲啶型生物碱的电喷雾质谱裂解规律,其中二氢两面针碱和二氢白屈菜红碱,8-丙酮基二氢两面针碱和8-酮基二氢白屈菜红碱是两对二个甲氧基分别在C-9 和C-10,C-10 和C-11 的同分异构体。实验结果表明,在相同的碰撞能下,这类位置异构体的ESI MS2 质谱二级碎片离子的相对峰度存在很大差异,这可以用于区分该类同分异构体,采用液-质联用可以对两面针的总生物碱提取物中的这些同分异构体加于区分。同时在本实验采用的液相色谱条件下,多种生物碱得到较好的分离,通过和对照品的保留时间,紫外吸收光谱及电喷雾质谱图对照,鉴定了11 个主要色谱峰。 第四部分(第九章)对液质联用技术在药物代谢中的运用进行了综述。 This dissertation consisted of four sections. The first two sections elaborated thephytochemical investigation of the rhizomes Gymnadenia conopsea R. Br., methoddevelopment for rapid identifying and qutifying the chemical condtituent of thistibetant medicine, and the chemical fingerprint analysis of rhizomes of G. conopsea,Salviae miltiorrhiza and P. notoginseng. The third section studied the fragmentationmechanism of six alkaloids from Zanthoxylum nitidium and method development forrapid identifying varieties of alkaloids from the extract of this herbal medicine. Thefourth section reviewed HPLC- MS method in drug metabolism studies. The first section consisted of chapters 1, 2, 3. Chapter 1 elaborated the phytochemicalinvestigation of Gymnadenia conopsea R. Br. Four succinate derivative esters wereisolated from the methanol extract of the rhizomes of G. conopsea through repeatedcolumn chromatography on normal and reversed phase silica gel, their structures weredetermined by ESI-MS, 1D and 2D NMR evidence. They were firstly discoveredfrom this species. In chapter 2, a high-performance liquid chromatography.diodearray detection (HPLC-DAD) method has been firstly developed for quantitation oftwo characteristic constituents, adenosine and 4-hydroxybenzyl alcohol, from theextract of rhizomes of G. conopsea. All 10 samples of G. conopsea contained differentamount of adenosine and 4-hydroxybenzyl alcohol. Adenosine and the4-hydroxybenzyl alcohol can be applied in identification and quality control for theroots of G. conopsea. In chapter 3, a high-performance liquid chromatography.diodearray detection.tandem mass spectrometry (HPLC-DAD-MSn) method has been firstly developed for chemical fingerprint analysis of rhizomes of G. conopsea andrapid identification of major compounds in the fingerprints. Comparing the UV andMS spectra with those of authentic compounds, seven main peaks in the fingerprintswere identified as adenosine, 4-hydroxybenzyl alcohol, 4-hydroxybenzyl aldehyde,dactylorhin B, loroglossin, dactylorhin A and militarine. The Computer AidedSimilarity Evaluation System for Chromatographic Fingerprint of TraditionalChinese Medicine (CASES) was employed to evaluate the similarities of 10 samplesof the rhizomes of G. conopsea collected from Sichuan, Qinghai and Hebei provincesand Tibet autonomous region of China, and Nepal. These samples from differentsources had similar chemical fingerprints to each other. The second section consisted of chapters 4, 5, 6 and 7. In chapter 4,both thecharacteristic spectra of liposoluble tanshinones and aqueous-soluble salvianolic acidswere established by the electrospray ionization mass spectrometry (ESI MS)technique and the differences between standard and crude rhizomes of Salviaemiltiorrhiza Bge. from 5 sources were analyzed. The law of electrospray ion trap mass(ESI ITMS) of typical tanshinones and salvianolic acids is studied.The analysis of the chemical constituent of rhizomes of Salviae miltiorrhiza Bge. byliquid chromatography coupled with mass spectrum (LC/MS) technique wasestablished,and the distances among standard herb and crude herb from 5 sourceswere calculated by clustering analysis. According the DAD spectra and MS2 data,9tanshinones could be speculated. In chapter 5, the character spectra of total saponinsin P. notoginseng extracts were established by ESI ITMS and selective ion monitoring(SIM) technology. The law of notoginsenosides by ESI MS2 was studied. In chapter 6,the characteristic spectra of Compound Danshen Tablet established and compared byESI-MS and HPLC/DAD/MS, 6 known tanshinones and 3 saponins were speculated.In chapter 7, the advantage and disadvantage of the strategy, using the ESI ITMS andLC/MS techniques for study of characteristic spetra of danshen and Compound Danshen Tablet, were summerized. The third section (chapter 8) studied the fragmentation mechanism of six alkaloids,dihydronitidine, dihydrochelerythrine, 8-acetonyl dihydronitidine,8-acetonyldrochelerythrine, nitidine and 1,3-bis (8-dihydronitidinyl)-acetone, by ESIMSn. Tandem mass spectrometry experiments indicated that different substitutionsites of the methoxyl groups at C-9 and C-10 or at C-10 and C-11 determined thedifferent abundances of the MS2 fragmentation ions using the same collision energy.According to the different abundances of MS2 product ions, positional isomericbenzo[c] phenanthridine alkaloids can be differentiated. Moreover, ten constituents inthe crude alkaloids extract from the roots of Zanthoxylum nitidium were rapidlyidentified by high-performance liquid chromatography coupled with tandem massspectrometry (HPLC-MSn), through comparing the retention times and ESI MSn spectra with the authentic standards. The fourth section (chapter 9) is a review on HPLC-MS method development in drug metabolism studies.
Resumo:
本学位论文由4章组成。第一章是论文的主体,报道了中药射干的化学成分研究。第二章是中药射干代用品川射干的化学成分研究,并附带报道了西番莲化学成分的研究结果。第三章是射干、川射干及西番莲提取物化学成分串联质谱分析的报道。第四章为综述,概述了射干及鸢尾属植物的化学成分和药理研究进展。 在第一和二章中分别报道了射干(Belamcanda chinensis (L.) DC.)、川射干 (Iris tectorum Maxim.)及西番莲(Passiflora incarnate L.)化学成分的分离纯化与结构鉴定。采用正、反相硅胶柱层析、凝胶柱层析、薄层制备及HPLC等各种分离方法,从三种药用植物中共分离出68个不同的化合物,其中61个的结构得 得以鉴定,另外4个化合物的结构正在鉴定中,3个由于量少且有点杂质未作进一步的鉴定。 中药射干(Rhizoma Belamcandae)为射干植物的干燥根茎,从中共分离出53个化合物,通过红外、质谱及核磁共振等波谱方法鉴定了包括12个新化合物在内的48个,结构类型分别属于iridal型三萜及其新颖的二聚体、异黄酮、黄酮及黄酮醇、香豆素、甾体、芳香酸和脂肪酸及其甘油酯等。新化合物中有两个异黄酮类化合物,其结构分别鉴定为5,7,8,4′-四羟基-6-甲氧基异黄酮和5,6-二羟基-4′-甲氧基异黄酮-7-O-β-D-吡喃葡萄糖苷;八个新的iridal型三萜化合物分别鉴定为鸢尾烯(L)、16-甲氧基鸢尾烯、16-去羟基鸢尾烯、2-(E)-16-去羟基鸢尾烯、16-去羟基鸢尾烯B、3-乙酰基-16-去羟基鸢尾烯、iristectoroneL和iristectoroneM;两个结构骨架新颖的双三萜,分别命名为射干素A和射干素B,其分离纯化的困难以及结构的新颖和复杂突显出该论文的科学意义。除这些新化合物外,还有9个已知化合物为首次从中药射干中分离得到。此外,从中药射干的代用品川射干中分离得到7个已知化合物,主要是黄酮类成分及iridal型三萜化合物,其中1个三萜化合物为从射干中分离鉴定的新成分。另外还从西番莲中分离出8个化合物,鉴定了其中的6个,主要为黄酮碳苷。 第三章是关于射干、川射干及西番莲提取物化学成分的ESI-MS-MS分析,在初步探讨了从这些植物中分离鉴定出的一些异黄酮及黄酮碳苷的质谱裂解规律基础上,通过质谱和串联质谱分析,定性和半定量地检测了射干和川射干中主要的异黄酮成分以及西番莲中的黄酮碳苷成分,为这些药材品质的快速鉴定提供了一种简便方法。 第四章概述了射干及鸢尾属药用植物的化学和药理研究进展,特别是对其中异黄酮及三萜类成分的研究进展进行了深入系统的综述。 This dissertation is composed by four chapters. The first and second chapter reports the phytochemical investigation of three medicine plants, Belamcanda chinensis (L.)DC., Iris tectorum Maxim. and Passiflora incarnate L. Sixty eight different compounds were isolated and sixty one of them were identified. The third chapter described rapid ESI-MS-MS analysis of B. chinensis, I. tectorum, and P. incarnate. The forth part is a review about the progress of studies on the chemical constituents from Belamcanda chinensis and Iris species. Fifty-three compounds were isolated from Rhizoma Belamcandae, the rhizomes of B. chinensis by the methods of column chromatography (normal and reversed phase silica gel, Sephadex LH-20), preparative TLC and HPLC. On the basis of spectroscopic methods including IR, ESI-MS, 1-D and 2-D NMR, forty eight of them were identified as seventeen flavonoids, seventeen tritepenoids, one cumarin, five steroids and some benzene derivative etc. Among them, the structures of twelve new compounds were elucidated as 6-methoxy-5,7,8,4′-tetrahydryoxyisoflavoe, 4′-methoxy-5,6-dihydroxyisoflavone-7-O-β-D-glucopyranoside, iristectorene L, 16-methoxyisoiridogermanal, 16-dehydroxyisoiridogermanal, 2-(E)-16-dehydroxy isoiridogermanal, 16-dehydroxyiristectorene B, 3-acetyl-16-dehydroxyisoiridoger- manal, iristectorone L, iristectorone M, belamcandene A and belamcandene B. Last two new compounds are dimer of triterpenoids with a novel carbon skeleton. Beside the new compounds, nine known ones were isolated from this plant for the first time. Isolation of I. tectorum yielded seven compounds. On the basis of spectroscopic methods including ESI-MS, NMR and the comparison with authentic samples, three of them were determined as isoflavone, two of them were triterpenoids, and other two were β-sitosterol and apocynin. All of them are known compounds except one of iridal type triterpenoid, 16-dehydroxyiristectorene B, which also obtained from B. chinensis as a new compound. Isolation of P. incarnate yielded eight compounds. Six of them were determined on the basis of spectroscopic methods including ESI-MS, NMR and the comparison with authentic samples. Four of them are flavone-C-gluconside, and two are steroids. The third chapter describes the tandem mass spectrometry (ESI-MS-MS) analysis of the isoflavonoids from B. chinensis and I. tectorum, as well as C-glycosyl-flavonoide from P. incarnate, in order to explore the rapid methodology of validating the quality of the herbs. In addition, the fractionation rules of some iosflavonoids and C-glycosyl-flavonoids were discussed. The fourth chapter summarizes the research development on chemistry and pharmacology of medicine plants of B.chinensis and Iris species.
Resumo:
本论文由三部分共4 章组成。第一部分阐述了大戟科大戟属传统中药千金子(Euphorbia lathyris L.)化学成分、生物学活性以及千金子化学成分的HPLC、UPLC-MS、GC-MS 分析成果。第二部分介绍了民族药材暖地大叶藓(Rhodobryum giganteum (Schwaegr.) Par.)的化学成分研究和结构鉴定。第三部分概述了大戟属 植物中大环二萜酯的研究进展。 第一章包括1-3 节。在第1, 2 节中报道了千金子(Euphorbia lathyris L.)95% 乙醇提取物的化学成分分离鉴定。我们采用正、反相硅胶柱层析、重结晶等各种分离方法,凭借MS、IR、NMR、X-ray 等现代仪器手段,从中共分离鉴定22 个化合物。其中8 个是高活性化合物前体-续随子烷型大环二萜及3 个巨大戟烷型二萜,还有香豆素、生物碱、甾体等类型,其中完成对5 个大环二萜酯构型的确认,对2 个二萜酯构型进行了修正。第3 节中介绍对千金子化学成分的细胞毒性、α-葡萄糖苷酶抑制活性、P-gp 表达抑制活性的模型筛选结果。 第二章包括3 节,第1 节报道不同产地千金子高效液相色谱定量分析结果。第2 节介绍了各大环二萜酯的HPLC-MS/MS 的分析结果,并且对其质谱裂解规律、UPLC-MS 快速鉴定方法做了进一步讨论。第3 节介绍了千金子挥发油成分分析。采用传统水蒸气蒸馏方法提取千金子中的挥发油,并经气相色谱-质谱联用(GC-MS)技术共分离鉴定出 49 个化合物,占挥发油总量的90.48%。 第三章包括1, 2 两节,第1 节报道了暖地大叶藓化学成分。采用正、反相硅胶,凝胶柱层析等各种分离方法和MS、IR、NMR 等解析手段,共分离鉴定10个化合物,其中一个环肽化合物为新化合物。第2 节介绍了暖地大叶藓挥发油成分分析,共分离鉴定出 52 个化合物,占其挥发油总量的85.67%。 第四章概述了大戟科大戟属植物中大环二萜酯的研究进展。 This dissertation consists of three parts. In the first part, it is elaborated that the phytochemical investigation from the traditional Chinese medicine: seeds of Euphorbia lathyris L.. Biological activity and constituents analysis by HPLC、UPLC-MS、GC-MS were reported. In the second part, it is discussed that the chemical constituents were isolated and identificated from minority nationalitical herb-Rhodobryum giganteum (Schwaegr.) Par.. The third part is a review about the progress of studies on macrocyclic diterpenes from Euphorbia. The first part is composed of 1-3 sections. The section 1and 2 is focused on the isolation and identification of chemical constituents from seeds of E. lathyris. 22 compounds were isolated from the seeds of E. lathyris. by isolation methods of column chromatography (silica gel, including reversed phase) and recrystallisation on the basis of spectroscopic methods including IR, MS, NMR and X-ray. In 8 macrocyclic and 3 ingenane diterpenes, the relative configuration of 5 macrocyclic diterpenes were confirmed, in which 2 were amended. In the third section, cell cytotoxic activity, restraining activity of α-Glucosidase and multidrug resistance (MDR) reversing activity about P-gp were tested. 5 potential revsering reagents were found. The second part is composed of 1-3 sections. In first section it is described that the quality of the chemical constituents of E. lathyris from 5 sources , which were analyzed by high-performance liquid chromatography. In addition, the fractionation rules of some macrocyclic diterpenes were discussed and Ultra Performance Liquid Chromatography/ electrospray ionization mass spectrometry (UPLC-MS) was applied for quick determination of compounds in the second section. In the third section, chemical analysis of the essential oil from seeds of E. lathyris by GC-MS were reported. The essential oil from the seeds of E. lathyris L. in Sichuan was extracted by steam distillation and 49 compounds were isolated and identified from the essential oil by gas chromatography-mass spectrometer (GC-MS). These compounds are accounted for 90.46% of the total essential oil. The second part, including section 4 and 5, is about the phytochemical investigation of R. giganteum. In the former section, ten compounds were isolated and identified. Among them, a new peptide was characterized by spectroscopic analysis including IR, MS and NMR. In the other section, 52 compounds were isolated and identified from the essential oil by gas chromatography-mass spectrometer (GC-MS). These compounds are accounted for 85.67% of the total essential oil. The third part is a review about the progress of studies on macrocyclic diterpenes from Euphorbia.
Resumo:
本学位论文首先报道了为解决低极性化合物的电喷雾质谱(ESI-MS)分析难题而建立的一种衍生化分析方法;然后从色谱-质谱联用分析、分离纯化和结构鉴定等方面分别报道了几种中藏药材的活性成分研究。论文由下述六章组成: 第一章报道了盐酸羟胺衍生化方法在电喷雾质谱 (ESI-MS) 分析中的应用。该方法利用盐酸羟胺和羰基成肟的快速反应,建立了针对三萜酮等含酮或醛羰基低极性化合物的ESI-MS 信号增强技术。此方法不仅可应用于增强羰基化合物的ESI-MS 质谱信号,还可检测化合物中羰基的个数以及辨别涉及羰基官能团的同分异构体。此外,通过简单的氧化反应,还可将该方法拓展到三萜醇、甾醇等含羟基的低极性化合物,增强它们的ESI-MS 信号。对比已报道的相关ESI-MS 增强质谱信号的衍生化方法,此方法有经济、实用、快速和简便的显著特点。 第二章是关于野生羌活及其栽培品种化学成分的色谱-质谱联用分析。对不同产地野生羌活生长过程中活性成分的动态变化、野生羌活不同形态部位和人工栽培羌活中的活性成分含量进行了HPLC 定量分析。结果表明主要活性成分羌活醇和异欧前胡素都随生长期存在规律性变化,羌活不同形态部位中的活性成分含量也有明显不同。这些实验结果有些较好地印证了传统中医的用药理论,有些也对羌活的传统使用方法提出了新的建议。 第三章介绍了几种传统中藏药材的色谱-质谱联用及串联质谱分析。通过GC-MS 方法,从藏药材长花党参挥发油中共分离鉴定出45 个化合物;利用HPLC方法测定了该藏药材中的主要化学成分——木犀草素的含量(0.7%);利用串联质谱技术,对西番莲和射干中的主要成分进行了快速鉴定,从西番莲中鉴定了4个黄酮碳苷;从不同产地的射干和川射干中鉴定了8 个主要异黄酮成分,其中包括一个未见报道的化合物。 第四章的内容为藏药材石莲叶点地梅的活性成分研究。从植物石莲叶点地梅(Androsace integra (Maxim.) Hand.-Mazz.) 乙醇提取物的正丁醇萃取部分共分离和鉴定了6 个化合物,利用MS 和NMR 等现代波谱学技术阐明了它们的结构:其中包括4 个三萜类化合物:分别是androsacin (1)、 ardisiacrispin A (2) 、saxifragifolin A (3) 和20(29)-lupen-3-one (4);一个神经酰胺:4-羟基-Δ8,9(Z)-鞘氨醇-2'-羟基正二十四碳酸酰胺(5);一个甾体类化合物:胡萝卜苷(6)。化合物1为新的13,28-epoxy-oleanane 型三萜皂苷,在其结构表征的过程中,采用LC-MS 进行糖分析,获得了值得推广的好结果。通过活性筛选发现化合物1~3 对HepG2肝癌细胞表现出不同程度的抑制活性,其中化合物2 活性最好,其IG50 为1.65μg/mL。 第五章是关于一些传统中藏药材的农药活性筛选。利用Syngenta 公司的活性筛选平台对68 种传统中藏药材醇提物进行了抗菌和除草的生物源农药活性筛选。结果表明所筛选的68 种植物提取物中,共有14 种样品表现出明显的除草/杀虫活性,其中水母雪莲花、松萝和茯神木等植物提取物还具有多种生物活性。活性成分还有待进一步追踪分离、纯化和结构鉴定。 第六章为文献综述,概述了羌活药材的研究进展。对羌活属及药用羌活植物从分类学、本草学、品质评价、人工栽培、化学成分及药理作用等方面进行了文献归纳和总结。 In this dissertation, an electrospray ionization mass spectrometry (ESI-MS) signal enhancement method, as well as the work of bioactive components study, HPLC-MS/MS application, bioassay screening, chromatograph separation and structure identification of the metabolites in several medicinal herbs have been reported. First chapter expounded a rapid, simple ESI-MS sensitivity enhancement method for detecting carbonyl groups in natural products has been developed by using hydroxylamine hydrochloride (NH2OH·HCl) as a derivatization reagent. We use the oxime formed during the derivatization reactions and its Beckmann rearrangement intermediates as a means of detecting the carbonyl groups originally present in these triterpenoids. In comparison with other derivatization methods in the literature, this method is simple, specific and can be used to detect carbonyl groups in triterpenoids which have low polarity and are poorly or non-ionizable. Moreover, it can also be used to detect hydroxyl groups by using the Dess-Martin periodinane (DMP) to convert primary and secondary hydroxyls into carbonyl groups. Chapter 2 reported an HPLC-MS method for analyzing the main bioactive compounds in both wild and cultured Notopterygium incisum. The results indicated that the main bioactive compounds varied through different seasons regularly, and in different commercial parts of this herb the content of these compounds also differed from each other. The quantitative analysis results showed that in the traditional commercial parts, the content of main chemical constitutes in Silkworm Notopterygium, Bamboo Notopterygium and Irregular-nodal Notopterygium are higher than that in Striped Notopterygium. This result is tally with the traditionally concept that the quality of Notopterygium, Bamboo Notopterygium and Irregular-nodal Notopterygium are better than that of Striped Notopterygium, which means that the quality of rhizomes is better than main roots. The chemical constituents of cultured N. incisum is reported for the first time in this dissertation and the analysis results showed some growth curves of chemical constituents in this plant, but still left some questions unanswered. Chapter 3 discussed the GC/LC-MS analysis of the traditional Chinese medicines Codonopsis thalictrifolis, Passiflora incarnate, Belamcanda chinensis and Passiflora incarnate. The main constituent, luteolin was isolated and identified from the traditional Tibet medicine of C. thalictrifolis. The quantitative analysis by HPLC has revealed that the content of luteolin in this herb is 0.7%. GC-MS was employed to analyzed chemical constituents of the essential oil from the flower of C. thalictrifolis. More than 60 peaks were detected and 45 of them were identified by comparing their spectra with that of the standards in the database and literatures. ESI-MS/MS was used to analyze the n-butanol extract of Passiflora incarnate. Based on the information of pseudo molecular ions and fragment ions of the glycosides, four major flavone-C-glycosides have been detected and identified as 7-methoxyluteolin-6-C-β-D-glucopyranoside, vitexin, swertisin and orientin. The isoflavone compounds in theextracts of three samples of B. chinensis collected in Gansu, Sichuan and Hunan, and the extract of Iris tectorum collected in Sichuan were analyzed by using TOF-HRMS and IT-MS. From the extracts of these herbs, a new isoflavone, identified as 5’,5,6,7-tetrahydroxy-3’4’-dimethoxyl isoflavon, and 7 known ones have been identified by analyzing the fragmentation patterns and their molecular formulas given by HRMS and the tandem mass spectrometry acquired by IT-MS. Chapter 4 elucidated the isolation and identification of a new triterpene saponin, androsacin (1), along with five known compounds (2-6) were isolated from the whole plants of Androsace integra (Maxim.) Hand.-Mazz., an herb used in traditional Chinese and Tibetan medicine. The chemical structure of the new compound was established as 3β-O-{β-D-glucopyranosyl-(1→4)-O-β-D-xylopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-[O-β-D-glucopyranosyl-(1→2)]-α-L-arabinopyranosyl}-16α-hydroxy-13β,28-epoxy-olean-30-al by analyzing its MS, 1D- and 2D-NMR spectra. Compound 2 was cytotoxic toward HepG2 cancer cell with the GI50 value of 1.65 μg/mL. Chapter 5 described the biogenic pesticide activity screening of 68 traditional Chinese and Tibetan medicine extractions. The intention of this study is to explore bioactive natural compounds from these traditional medicinal herbs for biogenic insecticides use. Based on Syngenta’s bioassay, 14 extractions of these traditional medicines showed pesticide activities, and some of them had multi-activities on antibacterial and insecticidal. Chapter 6 is a review on the chemical and bioactivity research progress of Notopterygium incisum and N. forbesii.
Resumo:
Pressurized capillary electrochromatography (pCEC) was coupled with electrospray ionization mass spectrometry (ESI-MS) using a coaxial sheath liquid interface. It was used for separation and analysis of peptides and proteins. The effects of organic modifier and applied voltage on separation were investigated, and the effects of pH value of the mobile phase and the concentration of the electrolyte on ESI-MS signal were investigated. The resolution and detection sensitivity with different separation methods (pCEC, capillary high-performance liquid chromatography) coupled on-line with mass spectrometry were compared for the separation of a peptide mixture. To evaluate the feasibility and reliability of the experimental setup of the system, tryptic digests of cytochrome c and modified protein as real samples were analyzed by using pCEC-ESI-MS.
Resumo:
Gas chromatography-mass spectrometry with electron ionization and positive-ion chemical ionization and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-TOF-MS) were applied for the characterization of the chemical composition of complex hydrocarbons in the non-polar neutral fraction of cigarette smoke condensates. Automated data processing by TOF-MS software combined with structured chromatograms and manual review of library hits were used to assign the components from GC x GC-TOF-MS analysis. The distributions of aliphatic hydrocarbons and aromatics were also investigated. Over 100 isoprenoid hydrocarbons were detected, including carotene degradation products, phytadiene isomers and carbocyclic diterpenoids. A total of 1800 hydrocarbons were tentatively identified, including aliphatic hydrocarbons, aromatics, and isoprenoid hydrocarbons. The identified hydrocarbons by GC x GC-TOF-MS were far more than those by GC-MS. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The applicability of on-line coupling of reversed-phase high-performance liquid chromatography to atmospheric pressure ionization tandem mass spectrometry for the separation and characterization of hop acids mixture from the crude extract of Humulus lupulus was investigated. The solvent system consisting of acetonitrile-aqueous formic acid was used to give proper separation of the six main hop bitter acids within 30 min. Further structural information about the components was acquired by collision-induced dissociation (CID). On the basis of analyses of the fragmentation patterns of the major alpha- and beta-bitter acids respectively, identification of the minor ones was performed using selected reaction monitoring (SRM) with a group of qualitatively relevant selected precursor-product ion transitions for each bitter acid in a single high performance liquid chromatography (HPLC) run. Using this technique, six minor hop acids, including "adprelupulone" observed for the first time in natural resources, were detected along with the six major acids. This hyphenated techniques provides potency for rapid qualitative determination of analogs and homologs in mixtures. (C) 2004 American Society for Mass Spectrometry.