834 resultados para Neuro-signalling
Resumo:
The Hedgehog family of secreted morphogens specifies the fate of a large number of different cell types within invertebrate and vertebrate embryos, including the muscle cell precursors of the embryonic myotome of zebrafish. Formation of Hedgehog-sensitive muscle fates is disrupted within homozygous zebrafish mutants of the you-type class, the majority of which disrupt components of the Hedgehog (HH) signal transduction pathway. We have undertaken a phenotypic and molecular characterisation of one of these mutants, you, which we show results from mutations within the zebrafish orthologue of the mammalian, gene scube2. This gene encodes a member of the Scube family of proteins, which is characterised by several protein motifs including EGF and CUB domains. Epistatic and molecular analyses position Scube2 function upstream of Smoothened (Smoh), the signalling component of the HH receptor complex, suggesting that Scube2 may act during HH signal transduction prior to, or during, receipt of the HH signal at the plasma membrane. In support of this model we show that scube2 has homology to cubilin, which encodes an endocytic receptor involved in protein trafficking suggesting a possible mode of function for Scube2 during HH signal transduction. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Macrophages are major effector cells of the innate immune system, and appropriate regulation of macrophage function requires the integration of multiple signalling inputs derived from the recognition of host factors (e.g. interferon-gamma/IFN gamma) and pathogen products (e.g. toll-like receptor/TLR agonists). The profound effects of IFN gamma pre-treatment (priming) on TLR-induced macrophage activation have long been recognised, but many of the mechanisms underlying the priming phenotype have only recently been identified. This review summarises the known mechanisms of integration between the IFN gamma and TLR signalling pathways. Synergy occurs at multiple levels, ranging from signal recognition to convergence of signals at the promoters of target genes. In particular, the cross-talk between the IFN gamma and LPS and CpG DNA signalling pathways is discussed. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Background: Interferon alpha (IFN-alpha) activated cellular signalling is negatively regulated by inhibitory factors, including the suppressor of cytokine signalling (SOCS) family. The effects of host factors such as obesity on hepatic expression of these inhibitory factors in subjects with chronic hepatitis C virus (HCV) are unknown. Objectives: To assess the independent effects of obesity, insulin resistance, and steatosis on response to IFN-alpha therapy and to determine hepatic expression of factors inhibiting IFN-alpha signalling in obese and nonobese subjects with chronic HCV. Methods: A total of 145 subjects were analysed to determine host factors associated with non-response to antiviral therapy. Treatment comprised IFN-alpha or peginterferon alpha, either alone or in combination with ribavirin. In a separate cohort of 73 patients, real time-polymerase chain reaction was performed to analyse hepatic mRNA expression. Immunohistochemistry for SOCS-3 was performed on liver biopsy samples from 38 patients with viral genotype 1 who had received antiviral treatment. Results: Non-response (NR) to treatment occurred in 55% of patients with HCV genotypes 1 or 4 and 22% with genotypes 2 or 3. Factors independently associated with NR were viral genotype 1/4 (p < 0.001), cirrhosis on pretreatment biopsy (p = 0.025), and body mass index >= 30 kg/m(2) (p = 0.010). Obese subjects with viral genotype 1 had increased hepatic mRNA expression of phosphoenolpyruvate carboxy kinase (p = 0.01) and SOCS-3 (p = 0.047), in comparison with lean subjects. Following multivariate analysis, SOCS-3 mRNA expression remained independently associated with obesity (p = 0.023). SOCS-3 immunoreactivity was significantly increased in obesity (p = 0.013) and in non-responders compared with responders (p = 0.014). Conclusions: In patients with chronic HCV viral genotype 1, increased expression of factors that inhibit interferon signalling may be one mechanism by which obesity reduces the biological response to IFN-alpha.
Resumo:
In the clinical setting, chronic administration of high doses of systemic morphine may result in neuro-excitatory behaviours such as myoclonus and allodynia in some patients. Additionally, high doses of m-opioid agonists such as morphine administered chronically by the intrathecal route in both rats and humans, as well as DAMGO in rats, have been reported to produce neuro-excitatory behaviours. However, more recently, it has begun to be appreciated that even at normal analgesic doses, opioids such as morphine are capable not only of activating pain inhibitory systems (analgesia/antinociception), but they also activate pain facilitatory systems such that post-opioid allodynia/hyperalgesia may be evident after cessation of opioid treatment. Whilst it is well documented that opioid receptors mediate the inhibitory effects of opioid analgesics, the excitatory and pro-nociceptive effects of opioids appear to involve indirect activation of N-methyl-D-aspartate (NMDA) receptors, such that the extent of pain relief produced may be the net effect of these two opposing actions. Apart from the NMDA-nitric oxide (NO) pro-nociceptive signaling cascade, considerable evidence also implicates dynorphin A as well as the endogenous anti-opioid peptides cholecystokinin (CCK), neuropeptide FF (NPFF) and orphanin FQ/nociceptin, in mediating opioid-induced neuro-excitation and abnormal pain behaviours. Apart from the neuro-excitatory effects that may be produced by the parent opioid, systemic administration of some opioid analgesics such as morphine and hydromorphone in rats and humans results in their rapid conversion to 3-glucuronide metabolites that also contribute significantly to the neuro-excitatory and abnormal pain behaviours produced