978 resultados para Neural stimulation.
Resumo:
The gene sequences of three different immunoglobulin (Ig) heavy chains, namely IgM, IgD and IgZ, were cloned from mandarin fish (Siniperca chuatsi) recently. In this study the distribution of these three kinds of Ig-producing cells in lymphoid-related tissues as head kidney, spleen, gill and intestine were investigated by using in situ hybridization, and their transcriptional changes were also analyzed by quantitative real-time PCR during 8 weeks after immunization. IgM-producing cells could be detected obviously and abundantly in all the tissues examined. A few numbers of IgD and IgZ positive cells were both detected in head kidney and spleen. IgZ positive cells could be detected in gill moderately while IgD showed negative results, otherwise no IgD or IgZ positive cells could be detected in intestine. After stimulated with bacterial pathogen Flavobacterium columnare G(4), the transcripts of these three Ig genes exhibited quite different kinetics. Significantly increased transcription of IgM gene was observed in almost all the tissues examined especially in boosted group. In contrast with IgM, seldom strong increase was examined for IgD and IgZ genes. For IgD, it seemed that the first injection could stimulate the immune response easier, since in almost all the tissues significant increase was detected at 1 or 2 weeks after injection. For IgZ, boosted injection could not enlarge the up-regulation of gene expression of first injection. This is the first case to report the transcriptional kinetics of three Ig genes in teleost after bacterin immunization. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The development of high-performance speech processing systems for low-resource languages is a challenging area. One approach to address the lack of resources is to make use of data from multiple languages. A popular direction in recent years is to use bottleneck features, or hybrid systems, trained on multilingual data for speech-to-text (STT) systems. This paper presents an investigation into the application of these multilingual approaches to spoken term detection. Experiments were run using the IARPA Babel limited language pack corpora (∼10 hours/language) with 4 languages for initial multilingual system development and an additional held-out target language. STT gains achieved through using multilingual bottleneck features in a Tandem configuration are shown to also apply to keyword search (KWS). Further improvements in both STT and KWS were observed by incorporating language questions into the Tandem GMM-HMM decision trees for the training set languages. Adapted hybrid systems performed slightly worse on average than the adapted Tandem systems. A language independent acoustic model test on the target language showed that retraining or adapting of the acoustic models to the target language is currently minimally needed to achieve reasonable performance. © 2013 IEEE.
Resumo:
Lake Dianchi is a shallow and turbid lake, located in Southwest China. Since 1985, Lake Dianchi has experienced severe cyanabacterial blooms (dominated by Microcystis spp.). In extreme cases, the algal cell densities have exceeded three billion cells per liter. To predict and elucidate the population dynamics ofMicrocystis spp. in Lake Dianchi, a neural network based model was developed. The correlation coefficient (R 2) between the predicted algal concentrations by the model and the observed values was 0.911. Sensitivity analysis was performed to clarify the algal dynamics to the changes of environmental factors. The results of a sensitivity analysis of the neural network model suggested that small increases in pH could cause significantly reduced algal abundance. Further investigations on raw data showed that the response of Microcystis spp. concentration to pH increase was dependent on algal biomass and pH level. When Microcystis spp. population and pH were moderate or low, the response of Microcystis spp. population would be more likely to be positive in Lake Dianchi; contrarily, Microcystis spp. population in Lake Dianchi would be more likely to show negative response to pH increase when Microcystis spp. population and pH were high. The paper concluded that the extremely high concentration of algal population and high pH could explain the distinctive response of Microcystis spp. population to +1 SD (standard deviation) pH increase in Lake Dianchi. And the paper also elucidated the algal dynamics to changes of other environmental factors. One SD increase of water temperature (WT) had strongest positive relationship with Microcystis spp. biomass. Chemical oxygen demand (COD) and total phosphorus (TP) had strong positive effect on Microcystis spp. abundance while total nitrogen (TN), biological oxygen demand in five days (BOD5), and dissolved oxygen had only weak relationship with Microcystis spp. concentration. And transparency (Tr) had moderate positive relationship with Microcystis spp. concentration.
Resumo:
Lake Dianchi is one of the most extensively impacted freshwater lakes by algal blooms. To investigate the response of dominant algal genera, neural networks were applied to model the relationship between water quality parameters and the biomass of four dominant genera (Microcystic spp., Anabaena sp., Quadricauda (Turp.) Breb, Pediastrum Mey) in Dianchi. Results showed that the timing and magnitude of algal blooms of Microcystic spp., nabaena sp., Quadricauda (Turp.) Breb, and Pediastrum Mey in Dianchi could be successfully predicted. The evaluation of environmental factors showed that pH had more significant impact on concentrations of all the four dominant algal genera than the nutrient factors, such as total phosphorus and total nitrogen.
Resumo:
Mammalian studies show that frustration is experienced when goal-directed activity is blocked. Despite frustration's strongly negative role in health, aggression and social relationships, the neural mechanisms are not well understood. To address this we developed a task in which participants were blocked from obtaining a reward, an established method of producing frustration. Levels of experienced frustration were parametrically varied by manipulating the participants' motivation to obtain the reward prior to blocking. This was achieved by varying the participants' proximity to a reward and the amount of effort expended in attempting to acquire it. In experiment 1, we confirmed that proximity and expended effort independently enhanced participants' self-reported desire to obtain the reward, and their self-reported frustration and response vigor (key-press force) following blocking. In experiment 2, we used functional magnetic resonance imaging (fMRI) to show that both proximity and expended effort modulated brain responses to blocked reward in regions implicated in animal models of reactive aggression, including the amygdala, midbrain periaqueductal grey (PAG), insula and prefrontal cortex. Our findings suggest that frustration may serve an energizing function, translating unfulfilled motivation into aggressive-like surges via a cortical, amygdala and PAG network.
Resumo:
The paper demonstrates the nonstationarity of algal population behaviors by analyzing the historical populations of Nostocales spp. in the River Darling, Australia. Freshwater ecosystems are more likely to be nonstationary, instead of stationary. Nonstationarity implies that only the near past behaviors could forecast the near future for the system. However, nonstionarity was not considered seriously in previous research efforts for modeling and predicting algal population behaviors. Therefore the moving window technique was incorporated with radial basis function neural network (RBFNN) approach to deal with nonstationarity when modeling and forecasting the population behaviors of Nostocales spp. in the River Darling. The results showed that the RBFNN model could predict the timing and magnitude of algal blooms of Nostocales spp. with high accuracy. Moreover, a combined model based on individual RBFNN models was implemented, which showed superiority over the individual RBFNN models. Hence, the combined model was recommended for the modeling and forecasting of the phytoplankton populations, especially for the forecasting.
Resumo:
A radial basis function neural network was employed to model the abundance of cyanobacteria. The trained network could predict the populations of two bloom forming algal taxa with high accuracy, Nostocales spp. and Anabaena spp., in the River Darling, Australia. To elucidate the population dynamics for both Nostocales spp. and Anabaena spp., sensitivity analysis was performed with the following results. Total Kjeldahl nitrogen had a very strong influence on the abundance of the two algal taxa, electrical conductivity had a very strong negative relationship with the population of the two algal species, and flow was identified as one dominant factor influencing algal blooms after a scatter plot revealed that high flow could significantly reduce the algal biomass for both Nostocales spp. and Anabaena spp. Other variables such as turbidity, color, and pH were less important in determining the abundance and succession of the algal blooms.
Resumo:
Clinorotation experiments were established to simulate microgravity on ground. It was found that there were obvious changes of Dunaliella salina FACHB435 cells and their metabolic characteristics during clinorotation. The changes included the increases of glycerol content, the rate of H+ secretion and PM H+-ATPase activity, and the decrease of ratio of the plasma membrane (PM) phospholipid to PM protein. These results indicated that microgravity was a stress environment to Dunaliella salina. It is deduced that it would be possible to attribute the effect of microgravity on algal cells to the secondary activation of water stress.
Resumo:
The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.
Resumo:
In this paper, a cellular neural network with depressing synapses for contrast-invariant pattern classification and synchrony detection is presented, starting from the impulse model of the single-electron tunneling junction. The results of the impulse model and the network are simulated using simulation program with integrated circuit emphasis (SPICE). It is demonstrated that depressing synapses should be an important candidate of robust systems since they exhibit a rapid depression of excitatory postsynaptic potentials for successive presynaptic spikes.
Resumo:
Silicon-on-insulator (SOI) substrate is widely used in micro-electro-mechanical systems (MEMS). With the buried oxide layer of SOI acting as an etching stop, silicon based micro neural probe can be fabricated with improved uniformity and manufacturability. A seven-record-site neural probe was formed by inductive-coupled plasma (ICP) dry etching of an SOI substrate. The thickness of the probe is 15 mu m. The shaft of the probe has dimensions of 3 mmx100 mu mx15 mu m with typical area of the record site of 78.5 mu m(2). The impedance of the record site was measured in-vitro. The typical impedance characteristics of the record sites are around 2 M Omega at 1 kHz. The performance of the neural probe in-vivo was tested on anesthetic rat. The recorded neural spike was typically around 140 mu V. Spike from individual site could exceed 700 mu V. The average signal noise ratio was 7 or more.
Resumo:
This paper presents an two weighted neural network approach to determine the delay time for a heating, ventilating and air-conditioning (HVAC) plan to respond to control actions. The two weighted neural network is a fully connected four-layer network. An acceleration technique was used to improve the General Delta Rule for the learning process. Experimental data for heating and cooling modes were used with both the two weighted neural network and a traditional mathematical method to determine the delay time. The results show that two weighted neural networks can be used effectively determining the delay time for AVAC systems.
Resumo:
On the basis of DBF nets proposed by Wang Shoujue, the model and properties of DBF neural network were discussed in this paper. When applied in pattern recognition, the algorithm and implement on hardware were presented respectively. We did experiments on recognition of omnidirectionally oriented rigid objects on the same level, using direction basis function neural networks, which acts by the method of covering the high dimensional geometrical distribution of the sample set in the feature space. Many animal and vehicle models (even with rather similar shapes) were recognized omnidirectionally thousands of times. For total 8800 tests, the correct recognition rate is 98.75%, the error rate and the rejection rate are 0.5% and 1.25% respectively. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we constructed a Iris recognition algorithm based on point covering of high-dimensional space and Multi-weighted neuron of point covering of high-dimensional space, and proposed a new method for iris recognition based on point covering theory of high-dimensional space. In this method, irises are trained as "cognition" one class by one class, and it doesn't influence the original recognition knowledge for samples of the new added class. The results of experiments show the rejection rate is 98.9%, the correct cognition rate and the error rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the rejection rate of test samples excluded in the training samples class is very high. It proves the proposed method for iris recognition is effective.
Resumo:
In order to effectively improve the classification performance of neural network, first architecture of fuzzy neural network with fuzzy input was proposed. Next a cost function of fuzzy outputs and non-fuzzy targets was defined. Then a learning algorithm from the cost function for adjusting weights was derived. And then the fuzzy neural network was inversed and fuzzified inversion algorithm was proposed. Finally, computer simulations on real-world pattern classification problems examine the effectives of the proposed approach. The experiment results show that the proposed approach has the merits of high learning efficiency, high classification accuracy and high generalization capability.