927 resultados para Networks on chip (NoC)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Various factors are believed to govern the selection of references in citation networks, but a precise, quantitative determination of their importance has remained elusive. In this paper, we show that three factors can account for the referencing pattern of citation networks for two topics, namely "graphenes" and "complex networks", thus allowing one to reproduce the topological features of the networks built with papers being the nodes and the edges established by citations. The most relevant factor was content similarity, while the other two - in-degree (i.e. citation counts) and age of publication - had varying importance depending on the topic studied. This dependence indicates that additional factors could play a role. Indeed, by intuition one should expect the reputation (or visibility) of authors and/or institutions to affect the referencing pattern, and this is only indirectly considered via the in-degree that should correlate with such reputation. Because information on reputation is not readily available, we simulated its effect on artificial citation networks considering two communities with distinct fitness (visibility) parameters. One community was assumed to have twice the fitness value of the other, which amounts to a double probability for a paper being cited. While the h-index for authors in the community with larger fitness evolved with time with slightly higher values than for the control network (no fitness considered), a drastic effect was noted for the community with smaller fitness. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Texture image analysis is an important field of investigation that has attracted the attention from computer vision community in the last decades. In this paper, a novel approach for texture image analysis is proposed by using a combination of graph theory and partially self-avoiding deterministic walks. From the image, we build a regular graph where each vertex represents a pixel and it is connected to neighboring pixels (pixels whose spatial distance is less than a given radius). Transformations on the regular graph are applied to emphasize different image features. To characterize the transformed graphs, partially self-avoiding deterministic walks are performed to compose the feature vector. Experimental results on three databases indicate that the proposed method significantly improves correct classification rate compared to the state-of-the-art, e.g. from 89.37% (original tourist walk) to 94.32% on the Brodatz database, from 84.86% (Gabor filter) to 85.07% on the Vistex database and from 92.60% (original tourist walk) to 98.00% on the plant leaves database. In view of these results, it is expected that this method could provide good results in other applications such as texture synthesis and texture segmentation. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Accurate malaria diagnosis is mandatory for the treatment and management of severe cases. Moreover, individuals with asymptomatic malaria are not usually screened by health care facilities, which further complicates disease control efforts. The present study compared the performances of a malaria rapid diagnosis test (RDT), the thick blood smear method and nested PCR for the diagnosis of symptomatic malaria in the Brazilian Amazon. In addition, an innovative computational approach was tested for the diagnosis of asymptomatic malaria. Methods The study was divided in two parts. For the first part, passive case detection was performed in 311 individuals with malaria-related symptoms from a recently urbanized community in the Brazilian Amazon. A cross-sectional investigation compared the diagnostic performance of the RDT Optimal-IT, nested PCR and light microscopy. The second part of the study involved active case detection of asymptomatic malaria in 380 individuals from riverine communities in Rondônia, Brazil. The performances of microscopy, nested PCR and an expert computational system based on artificial neural networks (MalDANN) using epidemiological data were compared. Results Nested PCR was shown to be the gold standard for diagnosis of both symptomatic and asymptomatic malaria because it detected the major number of cases and presented the maximum specificity. Surprisingly, the RDT was superior to microscopy in the diagnosis of cases with low parasitaemia. Nevertheless, RDT could not discriminate the Plasmodium species in 12 cases of mixed infections (Plasmodium vivax + Plasmodium falciparum). Moreover, the microscopy presented low performance in the detection of asymptomatic cases (61.25% of correct diagnoses). The MalDANN system using epidemiological data was worse that the light microscopy (56% of correct diagnoses). However, when information regarding plasma levels of interleukin-10 and interferon-gamma were inputted, the MalDANN performance sensibly increased (80% correct diagnoses). Conclusions An RDT for malaria diagnosis may find a promising use in the Brazilian Amazon integrating a rational diagnostic approach. Despite the low performance of the MalDANN test using solely epidemiological data, an approach based on neural networks may be feasible in cases where simpler methods for discriminating individuals below and above threshold cytokine levels are available.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents Bayesian solutions to inference problems for three types of social network data structures: a single observation of a social network, repeated observations on the same social network, and repeated observations on a social network developing through time. A social network is conceived as being a structure consisting of actors and their social interaction with each other. A common conceptualisation of social networks is to let the actors be represented by nodes in a graph with edges between pairs of nodes that are relationally tied to each other according to some definition. Statistical analysis of social networks is to a large extent concerned with modelling of these relational ties, which lends itself to empirical evaluation. The first paper deals with a family of statistical models for social networks called exponential random graphs that takes various structural features of the network into account. In general, the likelihood functions of exponential random graphs are only known up to a constant of proportionality. A procedure for performing Bayesian inference using Markov chain Monte Carlo (MCMC) methods is presented. The algorithm consists of two basic steps, one in which an ordinary Metropolis-Hastings up-dating step is used, and another in which an importance sampling scheme is used to calculate the acceptance probability of the Metropolis-Hastings step. In paper number two a method for modelling reports given by actors (or other informants) on their social interaction with others is investigated in a Bayesian framework. The model contains two basic ingredients: the unknown network structure and functions that link this unknown network structure to the reports given by the actors. These functions take the form of probit link functions. An intrinsic problem is that the model is not identified, meaning that there are combinations of values on the unknown structure and the parameters in the probit link functions that are observationally equivalent. Instead of using restrictions for achieving identification, it is proposed that the different observationally equivalent combinations of parameters and unknown structure be investigated a posteriori. Estimation of parameters is carried out using Gibbs sampling with a switching devise that enables transitions between posterior modal regions. The main goal of the procedures is to provide tools for comparisons of different model specifications. Papers 3 and 4, propose Bayesian methods for longitudinal social networks. The premise of the models investigated is that overall change in social networks occurs as a consequence of sequences of incremental changes. Models for the evolution of social networks using continuos-time Markov chains are meant to capture these dynamics. Paper 3 presents an MCMC algorithm for exploring the posteriors of parameters for such Markov chains. More specifically, the unobserved evolution of the network in-between observations is explicitly modelled thereby avoiding the need to deal with explicit formulas for the transition probabilities. This enables likelihood based parameter inference in a wider class of network evolution models than has been available before. Paper 4 builds on the proposed inference procedure of Paper 3 and demonstrates how to perform model selection for a class of network evolution models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of microlectronic lab-on-a-chip devices (LOACs) can now be pursued thanks to the continous advances in silicon technology. LOACs are miniaturized devices whose aim is to perform in a more efficient way specific chemical or biological analysis protocols which are usually carried out with traditional laboratory equipment. In this application area, CMOS technology has the potential to integrate LOAC functionalities for cell biology applications in single chips, e.g. sensors, actuators, signal conditioning and processing circuits. In this work, after a review of the state of the art, the development of a CMOS prototype chip for individual cell manipulation and detection based on dielectrophoresis will be presented. Issues related to the embedded optical and capacitive detection of cells will be discussed together with the main experimental results obtained in manipulation and detection of living cells and microparticles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interpretación realizada por las alumnas en prácticas de la Facultad de Traducción e Interpretación, Estíbaliz López-Leiton Trujillo, Danaide Rodríguez Hernández, Esther Ramírez Millares.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The field of complex systems is a growing body of knowledge, It can be applied to countless different topics, from physics to computer science, biology, information theory and sociology. The main focus of this work is the use of microscopic models to study the behavior of urban mobility, which characteristics make it a paradigmatic example of complexity. In particular, simulations are used to investigate phase changes in a finite size open Manhattan-like urban road network under different traffic conditions, in search for the parameters to identify phase transitions, equilibrium and non-equilibrium conditions . It is shown how the flow-density macroscopic fundamental diagram of the simulation shows,like real traffic, hysteresis behavior in the transition from the congested phase to the free flow phase, and how the different regimes can be identified studying the statistics of road occupancy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) are getting wide-spread attention since they became easily accessible with their low costs. One of the key elements of WSNs is distributed sensing. When the precise location of a signal of interest is unknown across the monitored region, distributing many sensors randomly/uniformly may yield with a better representation of the monitored random process than a traditional sensor deployment. In a typical WSN application the data sensed by nodes is usually sent to one (or more) central device, denoted as sink, which collects the information and can either act as a gateway towards other networks (e.g. Internet), where data can be stored, or be processed in order to command the actuators to perform special tasks. In such a scenario, a dense sensor deployment may create bottlenecks when many nodes competing to access the channel. Even though there are mitigation methods on the channel access, concurrent (parallel) transmissions may occur. In this study, always on the scope of monitoring applications, the involved development progress of two industrial projects with dense sensor deployments (eDIANA Project funded by European Commission and Centrale Adritica Project funded by Coop Italy) and the measurement results coming from several different test-beds evoked the necessity of a mathematical analysis on concurrent transmissions. To the best of our knowledge, in the literature there is no mathematical analysis of concurrent transmission in 2.4 GHz PHY of IEEE 802.15.4. In the thesis, experience stories of eDIANA and Centrale Adriatica Projects and a mathematical analysis of concurrent transmissions starting from O-QPSK chip demodulation to the packet reception rate with several different types of theoretical demodulators, are presented. There is a very good agreement between the measurements so far in the literature and the mathematical analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gossip protocols have been analyzed as a feasible solution for data dissemination on peer-to-peer networks. In this thesis, a new data dissemination protocol is proposed and compared with other known gossip mechanisms. Performance evaluation is based on simulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays the rise of non-recurring engineering (NRE) costs associated with complexity is becoming a major factor in SoC design, limiting both scaling opportunities and the flexibility advantages offered by the integration of complex computational units. The introduction of embedded programmable elements can represent an appealing solution, able both to guarantee the desired flexibility and upgradabilty and to widen the SoC market. In particular embedded FPGA (eFPGA) cores can provide bit-level optimization for those applications which benefits from synthesis, paying on the other side in terms of performance penalties and area overhead with respect to standard cell ASIC implementations. In this scenario this thesis proposes a design methodology for a synthesizable programmable device designed to be embedded in a SoC. A soft-core embedded FPGA (eFPGA) is hence presented and analyzed in terms of the opportunities given by a fully synthesizable approach, following an implementation flow based on Standard-Cell methodology. A key point of the proposed eFPGA template is that it adopts a Multi-Stage Switching Network (MSSN) as the foundation of the programmable interconnects, since it can be efficiently synthesized and optimized through a standard cell based implementation flow, ensuring at the same time an intrinsic congestion-free network topology. The evaluation of the flexibility potentialities of the eFPGA has been performed using different technology libraries (STMicroelectronics CMOS 65nm and BCD9s 0.11μm) through a design space exploration in terms of area-speed-leakage tradeoffs, enabled by the full synthesizability of the template. Since the most relevant disadvantage of the adopted soft approach, compared to a hardcore, is represented by a performance overhead increase, the eFPGA analysis has been made targeting small area budgets. The generation of the configuration bitstream has been obtained thanks to the implementation of a custom CAD flow environment, and has allowed functional verification and performance evaluation through an application-aware analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In questa tesi si è studiato l’insorgere di eventi critici in un semplice modello neurale del tipo Integrate and Fire, basato su processi dinamici stocastici markoviani definiti su una rete. Il segnale neurale elettrico è stato modellato da un flusso di particelle. Si è concentrata l’attenzione sulla fase transiente del sistema, cercando di identificare fenomeni simili alla sincronizzazione neurale, la quale può essere considerata un evento critico. Sono state studiate reti particolarmente semplici, trovando che il modello proposto ha la capacità di produrre effetti "a cascata" nell’attività neurale, dovuti a Self Organized Criticality (auto organizzazione del sistema in stati instabili); questi effetti non vengono invece osservati in Random Walks sulle stesse reti. Si è visto che un piccolo stimolo random è capace di generare nell’attività della rete delle fluttuazioni notevoli, in particolar modo se il sistema si trova in una fase al limite dell’equilibrio. I picchi di attività così rilevati sono stati interpretati come valanghe di segnale neurale, fenomeno riconducibile alla sincronizzazione.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis we dealt with the problem of describing a transportation network in which the objects in movement were subject to both finite transportation capacity and finite accomodation capacity. The movements across such a system are realistically of a simultaneous nature which poses some challenges when formulating a mathematical description. We tried to derive such a general modellization from one posed on a simplified problem based on asyncronicity in particle transitions. We did so considering one-step processes based on the assumption that the system could be describable through discrete time Markov processes with finite state space. After describing the pre-established dynamics in terms of master equations we determined stationary states for the considered processes. Numerical simulations then led to the conclusion that a general system naturally evolves toward a congestion state when its particle transition simultaneously and we consider one single constraint in the form of network node capacity. Moreover the congested nodes of a system tend to be located in adjacent spots in the network, thus forming local clusters of congested nodes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nella tesi viene studiata la dinamica stocastica di particelle non interagenti su network con capacita di trasporto finita. L'argomento viene affrontato introducendo un formalismo operatoriale per il sistema. Dopo averne verificato la consistenza su modelli risolvibili analiticamente, tale formalismo viene impiegato per dimostrare l'emergere di una forza entropica agente sulle particelle, dovuta alle limitazioni dinamiche del network. Inoltre viene proposta una spiegazione qualitativa dell'effetto di attrazione reciproca tra nodi vuoti nel caso di processi sincroni.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Region-specific empirically based ground-truth (EBGT) criteria used to estimate the epicentral-location accuracy of seismic events have been developed for the Main Ethiopian Rift and the Tibetan plateau. Explosions recorded during the Ethiopia-Afar Geoscientific Lithospheric Experiment (EAGLE), the International Deep Profiling of Tibet, and the Himalaya (INDEPTH III) experiment provided the necessary GT0 reference events. In each case, the local crustal structure is well known and handpicked arrival times were available, facilitating the establishment of the location accuracy criteria through the stochastic forward modeling of arrival times for epicentral locations. In the vicinity of the Main Ethiopian Rift, a seismic event is required to be recorded on at least 8 stations within the local Pg/Pn crossover distance and to yield a network-quality metric of less than 0.43 in order to be classified as EBGT5(95%) (GT5 with 95% confidence). These criteria were subsequently used to identify 10 new GT5 events with magnitudes greater than 2.1 recorded on the Ethiopian Broadband Seismic Experiment (EBSE) network and 24 events with magnitudes greater than 2.4 recorded on the EAGLE broadband network. The criteria for the Tibetan plateau are similar to the Ethiopia criteria, yet slightly less restrictive as the network-quality metric needs to be less than 0.45. Twenty-seven seismic events with magnitudes greater than 2.5 recorded on the INDEPTH III network were identified as GT5 based on the derived criteria. When considered in conjunction with criteria developed previously for the Kaapvaal craton in southern Africa, it is apparent that increasing restrictions on the network-quality metric mirror increases in the complexity of geologic structure from craton to plateau to rift. Accession Number: WOS:000322569200012