966 resultados para Natural light
Resumo:
A focused library based on the marine natural products polyandrocarpamines A (1) and B (2) has been designed and synthesised using parallel solution-phase chemistry. In silico physicochemical property calculations were performed on synthetic candidates in order to optimise the library for drug discovery and chemical biology. A library of ten 2-aminoimidazolone products (3–12) was prepared by coupling glycocyamidine and a variety of aldehydes using a one-step stereoselective aldol condensation reaction under microwave conditions. All analogues were characterised by NMR, UV, IR and MS. The library was evaluated for cytotoxicity towards the prostate cancer cell lines, LNCaP, PC-3 and 22Rv1.
Resumo:
This paper presents large, accurately calibrated and time-synchronised datasets, gathered outdoors in controlled environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. It discusses how the data collection process was designed, the conditions in which these datasets have been gathered, and some possible outcomes of their exploitation, in particular for the evaluation of performance of sensors and perception algorithms for UGVs.
Resumo:
Facilitated discussion with early childhood staff working with children and families affected by natural disasters in Queensland, Australia, raises issues regarding educational communication in emergencies. This paper reports on these discussions as ‘reflections on talk’. It examines discrepancies between the literature and staff talk, gaps in the literature, and the inaccessible style of some literature-demanded collaborative debate and information re-interpretation. Reframing of the discourse style was used to support staff de-briefing, mutual encouragement, and sharing of insights on promoting resilience in children and families. Formal investigation is required regarding effective emergency-situation talk between staff, as well as with children and families.
Resumo:
In this paper we present large, accurately calibrated and time-synchronized data sets, gathered outdoors in controlled and variable environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. These include four 2D laser scanners, a radar scanner, a color camera and an infrared camera. It provides a full description of the system used for data collection and the types of environments and conditions in which these data sets have been gathered, which include the presence of airborne dust, smoke and rain.
Resumo:
Nitrogen-doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400–700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N-doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface-bonded N species, whereas the core remains N doped. N-Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible-light irradiation. The surface-oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N-doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N-doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible-light-driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N-doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N-doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.
Resumo:
Studies of the optical properties and catalytic capabilities of noble metal nanoparticles (NPs), such as gold (Au) and silver (Ag), have formed the basis for the very recent fast expansion of the field of green photocatalysis: photocatalysis utilizing visible and ultraviolet light, a major part of the solar spectrum. The reason for this growth is the recognition that the localised surface plasmon resonance (LSPR) effect of Au NPs and Ag NPs can couple the light flux to the conduction electrons of metal NPs, and the excited electrons and enhanced electric fields in close proximity to the NPs can contribute to converting the solar energy to chemical energy by photon-driven photocatalytic reactions. Previously the LSPR effect of noble metal NPs was utilized almost exclusively to improve the performance of semiconductor photocatalysts (for example, TiO2 and Ag halides), but recently, a conceptual breakthrough was made: studies on light driven reactions catalysed by NPs of Au or Ag on photocatalytically inactive supports (insulating solids with a very wide band gap) have demonstrated that these materials are a class of efficient photocatalysts working by mechanisms distinct from those of semiconducting photocatalysts. There are several reasons for the significant photocatalytic activity of Au and Ag NPs. (1) The conduction electrons of the particles gain the irradiation energy, resulting in high energy electrons at the NP surface which is desirable for activating molecules on the particles for chemical reactions. (2) In such a photocatalysis system, both light harvesting and the catalysing reaction take place on the nanoparticle, and so charge transfer between the NPs and support is not a prerequisite. (3) The density of the conduction electrons at the NP surface is much higher than that at the surface of any semiconductor, and these electrons can drive the reactions on the catalysts. (4) The metal NPs have much better affinity than semiconductors to many reactants, especially organic molecules. Recent progress in photocatalysis using Au and Ag NPs on insulator supports is reviewed. We focus on the mechanism differences between insulator and semiconductor-supported Au and Ag NPs when applied in photocatalytic processes, and the influence of important factors, light intensity and wavelength, in particular estimations of light irradiation contribution, by calculating the apparent activation energies of photo reactions and thermal reactions.
Resumo:
The following research reports the emergence of Leptospira borgpetersenii serovar Arborea as the dominant infecting serovar following the summer of disasters and the ensuing clean up in Queensland, Australia during 2011. For the 12 month period (1 January to 31 December) L. borgpetersenii serovar Arborea accounted for over 49% of infections. In response to a flooding event public health officials need to issue community wide announcements warning the population about the dangers of leptospirosis and other water borne diseases. Communication with physicians working in the affected community should also be increased to update physicians with information such as clinical presentation of leptospirosis and other waterborne diseases. These recommendations will furnish public health officials with considerations for disease management when dealing with future disaster management programs.
Resumo:
Purpose: To objectively assess daily light exposure and physical activity levels in myopic and emmetropic children. Methods: One hundred and two children (41 myopes and 61 emmetropes) aged 10 to 15 years old had simultaneous objective measures of ambient light exposure and physical activity collected over a 2 week period during school term, using a wrist worn actigraphy device (Actiwatch-2). Measures of visible light illuminance and physical activity were captured every 30 seconds, 24 hours a day over this period. Mean hourly light exposure and physical activity for weekdays and weekends were examined. To ensure that seasonal variations didn’t confound comparisons, the light and activity data of the 41 myopes, was compared with 41 age and gender matched emmetropes who wore the Actiwatch over the same two week period. Results: Mean light exposure and physical activity for all 101 children with valid data exhibited significant changes with time of day and day of the week (p<0.0001). On average greater daily light exposure occurred on weekends compared to weekdays (p<0.05), and greater physical activity occurred on weekdays compared to weekends (p<0.01). Myopic children (n = 41, mean daily light exposure 915 ± 519 lux) exhibited significantly lower average light exposure compared to 41 age and gender matched emmetropic children (1272 ± 625 lux, p<0.01). The amount of daily time spent in bright light conditions (>1000 lux) was also significantly greater in emmetropes (127 ± 51 minutes) compared to myopes (91 ± 44 minutes, p<0.001). No significant differences were found between the average daily physical activity levels of myopes and emmetropes (p>0.05). Conclusions: Myopic children exhibit significantly lower daily light exposure, but no significant difference in physical activity compared to emmetropic children. This suggests the important factor involved in documented associations between myopia and outdoor activity is likely exposure to bright outdoor light rather than greater physical activity.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve in ISO834 [1]. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the fire performance of LSF walls was undertaken using realistic design fire curves developed based on Eurocode parametric [2] and Barnett’s BFD [3] curves using both full scale fire tests and numerical studies. It included LSF walls without cavity insulation, and the recently developed externally insulated composite panel system. This paper presents the details of finite element models developed to simulate the full scale fire tests of LSF wall panels under realistic design fires. Finite element models of LSF walls exposed to realistic design fires were developed, and analysed under both transient and steady state fire conditions using the measured stud time-temperature curves. Transient state analyses were performed to simulate fire test conditions while steady state analyses were performed to obtain the load ratio versus time and failure temperature curves of LSF walls. Details of the developed finite element models and the results including the axial deformation and lateral deflection versus time curves, and the stud failure modes and times are presented in this paper. Comparison with fire test results demonstrate the ability of developed finite element models to predict the performance and fire resistance ratings of LSF walls under realistic design fires.
Resumo:
Learning and memory depend on signaling mole- cules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the train- ing stimuli were presented in a non-associative manner. An- atomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically impli- cated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nu- cleus of the amygdala. When ML-7 was applied without as- sociative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the cir- cuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.
Resumo:
Visual localization in outdoor environments is often hampered by the natural variation in appearance caused by such things as weather phenomena, diurnal fluctuations in lighting, and seasonal changes. Such changes are global across an environment and, in the case of global light changes and seasonal variation, the change in appearance occurs in a regular, cyclic manner. Visual localization could be greatly improved if it were possible to predict the appearance of a particular location at a particular time, based on the appearance of the location in the past and knowledge of the nature of appearance change over time. In this paper, we investigate whether global appearance changes in an environment can be learned sufficiently to improve visual localization performance. We use time of day as a test case, and generate transformations between morning and afternoon using sample images from a training set. We demonstrate the learned transformation can be generalized from training data and show the resulting visual localization on a test set is improved relative to raw image comparison. The improvement in localization remains when the area is revisited several weeks later.
Resumo:
Remote dryland regions are characterised by sparse populations and socially marginalised voices which pose particular challenges to natural resource management. This paper considers the issue of how to achieve community engagement in regions with these characteristics. In doing so, the paper contributes to an expanding international research agenda focusing on the distinct characteristics of arid and semi-arid regions under the heading of 'dryland syndrome'. The paper draws on government liaison officer and local community perspectives of successful engagement in the case-study region of Lake Eyre Basin, Australia. The results demonstrate that widely recognised characteristics of successful engagement are required but insufficient for genuine engagement in remote dryland regions. In addition to building trust through community ownership, being inclusive, effective communication, and adequate resources, genuine community engagement in drylands also requires respecting the extreme conditions and extraordinary variability of these areas. Residents of dryland regions seek genuine engagement yet engage opportunistically when seasons are conducive and when tangible outcomes are visible. © 2011 The Authors. Geographical Research © 2011 Institute of Australian Geographers.
Resumo:
Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females) would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP) of four C. pecorum strains/genotypes that are recognized, either following (a) natural live infection or (b) administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD) four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations.
Resumo:
Sri Lanka has one of the highest rates of natural disasters and violent conflicts in the world. Yet there is a lack of research on its unique socio-cultural characteristics that determine an individual's cognitive and behavioural responses to distressing encounters. This study extends Goh, Sawang and Oei's (2010) revised transactional model to examine the cognitive and behavioural processes of occupational stress experience in the collectivistic society of Sri Lanka. A time series survey was used to measure the participant's stress-coping process. Using the revised transactional model and path analysis, a unique Sri Lankan model is identified that provides theoretical insights on the revised transactional model, and sheds light on socio-cultural dimensions of occupational stress and coping, thus equipping practitioners with a sound theoretical basis for the development of stress management programs in the workplace.