918 resultados para NIRF imaging
Resumo:
Use of radiolabeled nucleotides for tumor imaging is hampered by rapid in vivo degradation and low DNA-incorporation rates. We evaluated whether blocking of thymidine (dThd) synthesis by 5-fluoro-2'-deoxyuridine (FdUrd) could improve scintigraphy with radio-dThd analogues, such as 5-iodo-2'-deoxyuridine (IdUrd). We first show in vitro that coincubation with FdUrd substantially increased incorporation of [125I]IdUrd and [3H]dThd in the three tested human glioblastoma lines. Flow cytometry analysis showed that a short coincubation with FdUrd (1 h) produces a signal increase per labeled cell. We then measured biodistribution 24 h after i.v. injection of [125I]IdUrd in nude mice s.c. xenografted with the three glioblastoma lines. Compared with animals given [125I]IdUrd alone, i.v. preadministration for 1 h of 10 mg/kg FdUrd increased the uptake of [125I]IdUrd in the three tumors 4.8-6.8-fold. Compatible with previous reports, there were no side effects in mice observed for 2 months after receiving such a treatment. The tumor uptake of [125I]IdUrd was increased < or =13.6-fold when FdUrd preadministration was stepwise reduced to 1.1 mg/kg. Uptake increases remained lower (between 1.7- and 5.8-fold) in normal proliferating tissues (i.e., bone marrow, spleen, and intestine) and negligible in quiescent tissues. DNA extraction showed that 72-80% of radioactivity in tumor and intestine was bound to DNA. Scintigraphy of xenografted mice was performed at different times after i.v. injection of 3.7 MBq [125I]IdUrd. Tumor detection was significantly improved after FdUrd preadministration while still equivocal after 24 h in mice given [125I]IdUrd alone. Furthermore, background activity could be greatly reduced by p.o. administration of KClO4 in addition to potassium iodide. We conclude that FdUrd preadministration may improve positron or single photon emission tomography with cell division tracers, such as radio-IdUrd and possibly other dThd analogues.
Resumo:
Background: Conventional magnetic resonance imaging (MRI) techniques are highly sensitive to detect multiple sclerosis (MS) plaques, enabling a quantitative assessment of inflammatory activity and lesion load. In quantitative analyses of focal lesions, manual or semi-automated segmentations have been widely used to compute the total number of lesions and the total lesion volume. These techniques, however, are both challenging and time-consuming, being also prone to intra-observer and inter-observer variability.Aim: To develop an automated approach to segment brain tissues and MS lesions from brain MRI images. The goal is to reduce the user interaction and to provide an objective tool that eliminates the inter- and intra-observer variability.Methods: Based on the recent methods developed by Souplet et al. and de Boer et al., we propose a novel pipeline which includes the following steps: bias correction, skull stripping, atlas registration, tissue classification, and lesion segmentation. After the initial pre-processing steps, a MRI scan is automatically segmented into 4 classes: white matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and partial volume. An expectation maximisation method which fits a multivariate Gaussian mixture model to T1-w, T2-w and PD-w images is used for this purpose. Based on the obtained tissue masks and using the estimated GM mean and variance, we apply an intensity threshold to the FLAIR image, which provides the lesion segmentation. With the aim of improving this initial result, spatial information coming from the neighbouring tissue labels is used to refine the final lesion segmentation.Results:The experimental evaluation was performed using real data sets of 1.5T and the corresponding ground truth annotations provided by expert radiologists. The following values were obtained: 64% of true positive (TP) fraction, 80% of false positive (FP) fraction, and an average surface distance of 7.89 mm. The results of our approach were quantitatively compared to our implementations of the works of Souplet et al. and de Boer et al., obtaining higher TP and lower FP values.Conclusion: Promising MS lesion segmentation results have been obtained in terms of TP. However, the high number of FP which is still a well-known problem of all the automated MS lesion segmentation approaches has to be improved in order to use them for the standard clinical practice. Our future work will focus on tackling this issue.
Resumo:
In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes.
Resumo:
The objective was to design a vascular phantom compatible with digital subtraction angiography, computerized tomography angiography, ultrasound and magnetic resonance angiography (MRA). Fiducial markers were implanted at precise known locations in the phantom to facilitate identification and orientation of plane views from three-dimensional (3-D) reconstructed images. A vascular conduit connected to tubing at the extremities of the phantom ran through an agar-based gel filling it. A vessel wall in latex was included around the conduit to avoid diffusion of contrast agents. Using a lost-material casting technique based on a low melting point metal, geometries of pathological vessels were modeled. During the experimental testing, fiducial markers were detectable in all modalities without distortion. No leak of gadolinium through the vascular wall was observed on MRA after 5 hours. Moreover, no significant deformation of the vascular conduit was noted during the fabrication process (confirmed by microtome slicing along the vessel). The potential use of the phantom for calibration, rescaling, and fusion of 3-D images obtained from the different modalities as well as its use for the evaluation of intra- and inter-modality comparative studies of imaging systems are discussed. In conclusion, the vascular phantom can allow accurate calibration of radiological imaging devices based on x-ray, magnetic resonance and ultrasound and quantitative comparisons of the geometric accuracy of the vessel lumen obtained with each of these methods on a given well defined 3-D geometry.
Resumo:
The purpose of this study was to investigate the impact of in-plane coronary artery motion on coronary magnetic resonance angiography (MRA) and coronary MR vessel wall imaging. Free-breathing, navigator-gated, 3D-segmented k-space turbo field echo ((TFE)/echo-planar imaging (EPI)) coronary MRA and 2D fast spin-echo coronary vessel wall imaging of the right coronary artery (RCA) were performed in 15 healthy adult subjects. Images were acquired at two different diastolic time periods in each subject: 1) during a subject-specific diastasis period (in-plane velocity <4 cm/second) identified from analysis of in-plane coronary artery motion, and 2) using a diastolic trigger delay based on a previously implemented heart-rate-dependent empirical formula. RCA vessel wall imaging was only feasible with subject-specific middiastolic acquisition, while the coronary wall could not be identified with the heart-rate-dependent formula. For coronary MRA, RCA border definition was improved by 13% (P < 0.001) with the use of subject-specific trigger delay (vs. heart-rate-dependent delay). Subject-specific middiastolic image acquisition improves 3D TFE/EPI coronary MRA, and is critical for RCA vessel wall imaging.
Resumo:
Matrix sublimation has demonstrated to be a powerful approach for high-resolution matrix-assisted laser desorption ionization (MALDI) imaging of lipids, providing very homogeneous solvent-free deposition. This work presents a comprehensive study aiming to evaluate current and novel matrix candidates for high spatial resolution MALDI imaging mass spectrometry of lipids from tissue section after deposition by sublimation. For this purpose, 12 matrices including 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,6-dihydroxyacetphenone (DHA), 2',4',6'-trihydroxyacetophenone (THAP), 3-hydroxypicolinic acid (3-HPA), 1,8-bis(dimethylamino)naphthalene (DMAN), 1,8,9-anthracentriol (DIT), 1,5-diaminonapthalene (DAN), p-nitroaniline (NIT), 9-aminoacridine (9-AA), and 2-mercaptobenzothiazole (MBT) were investigated for lipid detection efficiency in both positive and negative ionization modes, matrix interferences, and stability under vacuum. For the most relevant matrices, ion maps of the different lipid species were obtained from tissue sections at high spatial resolution and the detected peaks were characterized by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. First proposed for imaging mass spectrometry (IMS) after sublimation, DAN has demonstrated to be of high efficiency providing rich lipid signatures in both positive and negative polarities with high vacuum stability and sub-20 μm resolution capacity. Ion images from adult mouse brain were generated with a 10 μm scanning resolution. Furthermore, ion images from adult mouse brain and whole-body fish tissue sections were also acquired in both polarity modes from the same tissue section at 100 μm spatial resolution. Sublimation of DAN represents an interesting approach to improve information with respect to currently employed matrices providing a deeper analysis of the lipidome by IMS.
Resumo:
AIMS: This study was performed to compare the sensitivity of ultrasonography, computerized tomography during arterial portography, delayed computerized tomography, and magnetic resonance imaging to detect focal liver lesions. Forty three patients with primary or secondary malignant liver lesions were studied prior to surgical intervention. METHODS: The results of the imaging studies were compared with intraoperative examination of the liver, intraoperative ultrasonography and pathology results (29 patients). In the non-operated (14 patients) group, we compared the number of lesions detected by each technique. RESULTS: One hundred and forty six lesions were detected. There was 84% sensitivity with computerized tomography during arterial portography, 61.3% with delayed scan, 63.3% with magnetic resonance imaging and 51% with ultrasonography in operated patients. In patients who did not undergo surgery, magnetic resonance imaging was more sensitive in detecting lesions. CONCLUSIONS: In operated and non-operated patients series, CT during arterial portography had the highest sensitivity, but magnetic resonance imaging had the most consistent overall results.
3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition.
Resumo:
Current 2D black blood coronary vessel wall imaging suffers from a relatively limited coverage of the coronary artery tree. Hence, a 3D approach facilitating more extensive coverage would be desirable. The straightforward combination of a 3D-acquisition technique together with a dual inversion prepulse can decrease the effectiveness of the black blood preparation. To minimize artifacts from insufficiently suppressed blood signal of the nearby blood pools, and to reduce residual respiratory motion artifacts from the chest wall, a novel local inversion technique was implemented. The combination of a nonselective inversion prepulse with a 2D selective local inversion prepulse allowed for suppression of unwanted signal outside a user-defined region of interest. Among 10 subjects evaluated using a 3D-spiral readout, the local inversion pulse effectively suppressed signal from ventricular blood, myocardium, and chest wall tissue in all cases. The coronary vessel wall could be visualized within the entire imaging volume.
Resumo:
Schizophrenia is a complex psychiatric disorder characterized by disabling symptoms and cognitive deficit. Recent neuroimaging findings suggest that large parts of the brain are affected by the disease, and that the capacity of functional integration between brain areas is decreased. In this study we questioned (i) which brain areas underlie the loss of network integration properties observed in the pathology, (ii) what is the topological role of the affected regions within the overall brain network and how this topological status might be altered in patients, and (iii) how white matter properties of tracts connecting affected regions may be disrupted. We acquired diffusion spectrum imaging (a technique sensitive to fiber crossing and slow diffusion compartment) data from 16 schizophrenia patients and 15 healthy controls, and investigated their weighted brain networks. The global connectivity analysis confirmed that patients present disrupted integration and segregation properties. The nodal analysis allowed identifying a distributed set of brain nodes affected in the pathology, including hubs and peripheral areas. To characterize the topological role of this affected core, we investigated the brain network shortest paths layout, and quantified the network damage after targeted attack toward the affected core. The centrality of the affected core was compromised in patients. Moreover the connectivity strength within the affected core, quantified with generalized fractional anisotropy and apparent diffusion coefficient, was altered in patients. Taken together, these findings suggest that the structural alterations and topological decentralization of the affected core might be major mechanisms underlying the schizophrenia dysconnectivity disorder. Hum Brain Mapp, 36:354-366, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
RESUME LARGE PUBLIC Le système nerveux central est principalement composé de deux types de cellules :les neurones et les cellules gliales. Ces dernières, bien que l'emportant en nombre sur les neurones, ont longtemps été considérées comme des cellules sans intérêts par les neuroscientifiques. Hors, les connaissances modernes à leurs sujets indiquent qu'elles participent à la plupart des tâches physiologiques du cerveau. Plus particulièrement, elles prennent part aux processus énergétiques cérébraux. Ceux-ci, en plus d'être vitaux, sont particulièrement intrigants puisque le cerveau représente seulement 2 % de la masse corporelle mais consomme environ 25 % du glucose (substrat énergétique) corporel. Les astrocytes, un type de cellules gliales, jouent un rôle primordial dans cette formidable utilisation de glucose par le cerveau. En effet, l'activité neuronale (transmission de l'influx nerveux) est accompagnée d'une augmentation de la capture de glucose, issu de la circulation sanguine, par les astrocytes. Ce phénomène est appelé le «couplage neurométabolique » entre neurones et astrocytes. L'ion sodium fait partie des mécanismes cellulaires entrant en fonction lors de ces processus. Ainsi, dans le cadre de cette thèse, les aspects dynamiques de la régulation du sodium astrocytaire et leurs implications dans le couplage neurométabolique ont été étudiés par des techniques d'imagerie cellulaires. Ces études ont démontré que les mitochondries, machineries cellulaires convertissant l'énergie contenue dans le glucose, participent à la régulation du sodium astrocytaire. De plus, ce travail de thèse a permis de découvrir que les astrocytes sont capables de se transmettre, sous forme de vagues de sodium se propageant de cellules en cellules, un message donnant l'ordre d'accroître leur consommation d'énergie. Cette voie de signalisation leur permettrait de fournir de l'énergie aux neurones suite à leur activation. RESUME Le glutamate libéré dans la fente synaptique pendant l'activité neuronale, est éliminé par les astrocytes environnants. Le glutamate est co-transporté avec des ions sodiques, induisant une augmentation intracellulaire de sodium (Na+i) dans les astrocytes. Cette élévation de Na+i déclenche une cascade de mécanismes moléculaires qui aboutissent à la production de substrats énergétiques pouvant être utilisés par les neurones. Durant cette thèse, la mesure simultanée du sodium mitochondrial (Na+mit) et cytosolique par des techniques d'imagerie utilisant des sondes fluorescentes spécifiques, a indiqué que les variations de Na+i induites par le transport du glutamate sont transmises aux mitochondries. De plus, les voies d'entrée et de sortie du sodium mitochondrial ont été identifiées. L'échangeur de Na+ et de Ca2+ mitochondrial semble jouer un rôle primordial dans l'influx de Na+mit, alors que l'efflux de Na+mit est pris en charge par l'échangeur de Na+ et de H+ mitochondrial. L'étude du Na+mit a nécessité l'utilisation d'un système de photoactivation. Les sources de lumière ultraviolette (UV) classiques utilisées à cet effet (lasers, lampes à flash) ayant plusieurs désavantages, une alternative efficace et peu coûteuse a été développée. Il s'agit d'un système compact utilisant une diode électroluminescente (LED) à haute puissance et de longueur d'onde de 365nm. En plus de leurs rôles dans le couplage neurométabolique, les astrocytes participent à la signalisation multicellulaire en transmettant des vagues intercellulaires de calcium. Ce travail de thèse démontre également que des vagues intercellulaires de sodium peuvent être évoquées en parallèle à ces vagues calciques. Le glutamate, suite à sa libération par un mécanisme dépendent du calcium, est réabsorbé par les transporteurs au glutamate. Ce mécanisme a pour conséquence la génération de vagues sodiques se propageant de cellules en cellules. De plus, ces vagues sodiques sont corrélées spatialement avec une consommation accrue de glucose par les astrocytes. En conclusion, ce travail de thèse a permis de montrer que le signal sodique astrocytaire, déclenché en réponse au glutamate, se propage à la fois de façon intracellulaire aux mitochondries et de façon intercellulaire. Ces résultats suggèrent que les astrocytes fonctionnent comme un réseau de cellules nécessaire au couplage énergétique concerté entre neurones et astrocytes et que le sodium est un élément clé dans les mécanismes de signalisations cellulaires sous-jacents. SUMMARY Glutamate, released in the synaptic cleft during neuronal activity, is removed by surrounding astrocytes. Glutamate is taken-up with Na+ ions by specific transporters, inducing an intracellular Na+ (Na+i) elevation in astrocytes which triggers a cascade of molecular mechanisms that provides metabolic substrates to neurons. Thus, astrocytic Na+i homeostasis represents a key component of the so-called neurometabolic coupling. In this context, the first part of this thesis work was aimed at investigating whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Simultaneous monitoring of both mitochondrial Na+ (Na+mit) and cytosolic Na+ changes with fluorescent dyes revealed that glutamate-evoked cytosolic Na+ elevations are indeed transmitted to mitochondria. The mitochondrial Na+/Ca2+ exchangers have a prominent role in the regulation of Na+mit influx pathway, and Na+mit extrusion appears to be mediated by Na+/H+ exchangers. To demonstrate the implication of Na+/Ca2+ exchangers, this study has required the technical development of an UV-flash photolysis system. Because light sources for flash photolysis have to be powerful and in the near UV range, the use of UV lasers or flash lamps is usually required. As an alternative to these UV sources that have several drawbaks, we developped a compact, efficient and lowcost flash photolysis system which employs a high power 365nm light emitting diode. In addition to their role in neurometabolic coupling, astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. The third part of this thesis show that intercellular Na+ waves can be evoked in parallel to Ca2+ waves. Glutamate released by a Ca2+ wave-dependent mechanism is taken up by glutamate transporters, resulting in a regenerative propagation of cytosolic Na+ increases. Na+ waves in turn lead to a spatially correlated increase in glucose uptake. In conclusion, the present thesis demonstrates that glutamate-induced Na+ changes occurring in the cytosol of astrocytes propagate to both the mitochondrial matrix and the astrocytic network. These results furthermore support the view that astrocytic Na+ is a signal coupled to the brain energy metabolism.
Resumo:
BACKGROUND: Accurate staging is essential to determine the correct management of patients diagnosed with prostate cancer. We assess the accuracy of 3T multiparametric magnetic resonance imaging (MRI) with endorectal coil (3TemMRI) in detecting prostate cancer local extension. METHODS: We retrospectively reviewed charts from January 2008 to July 2012 from all patients undergoing radical prostatectomy. Patients were only included if 3TemMRI and radical prostatectomy were performed at our institution. Based on the presence of extracapsular extension (ECE) at 3TemMRI, prostate cancer was dichotomized into locally advanced or organ-confined disease. The accuracy of 3TemMRI local staging was then evaluated using definitive pathology as a reference. RESULTS: Overall, 177 radical prostatectomies were performed within the timeframe. After applying exclusion criteria, 60 patients were included in the final analysis. The mean patient age was 67 ± 7 (standard deviation) years. Mean prostate-specific antigen value was 12.7 ± 12.7 ng/L. Based on preoperative characteristics, we considered 38 of the 60 patients (63%) patients high risk. 3TemMRI identified an organ-confined tumour in 46 patients and locally advanced disease in 14 patients. When correlated to final pathology, 3TemMRI specificity, sensitivity, negative and positive predictive values, and accuracy in detecting locally advanced prostate cancer were 90%, 35%, 57%, 79% and 62%, respectively. INTERPRETATION: This study shows that the use of preoperative 3TemMRI can be used to identify organ-confined prostate cancer when locally advanced disease is suspected.