609 resultados para Multiplex


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth anomaly that requires prolonged multidisciplinary rehabilitation. Although variation in several genes has been identified as contributing to NSCLP, most of the genetic susceptibility loci have yet to be defined. To identify additional contributory genes, a high-throughput genomic scan was performed using the Illumina Linkage IVb Panel platform. We genotyped 6008 SNPs in nine non-Hispanic white NSCLP multiplex families and a single large African-American NSCLP multiplex family. Fourteen chromosomal regions were identified with LOD>1.5, including six regions not previously reported. Analysis of the data from the African-American and non-Hispanic white families revealed two likely chromosomal regions: 8q21.3-24.12 and 22q12.2-12.3 with LOD scores of 2.98 and 2.66, respectively. On the basis of biological function, syndecan 2 (SDC2) and growth differentiation factor 6 (GDF6) in 8q21.3-24.12 and myosin heavy-chain 9, non-muscle (MYH9) in 22q12.2-12.3 were selected as candidate genes. Association analyses from these genes yielded marginally significant P-values for SNPs in SDC2 and GDF6 (0.01

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterotoxigenic Escherichia coli (ETEC) causes significant morbidity and mortality in infants of developing countries and is the most common cause of diarrhea in travelers to these areas. Enterotoxigenic Escherichia coli infections are commonly caused by ingestion of fecally contaminated food. A timely method for the detection of ETEC in foods would be important in the prevention of this disease. A multiplex polymerase chain reaction (PCR) assay which has been successful in detecting the heat-labile and heat-stable toxins of ETEC in stool was examined to determine its utility in foods. This PCR assay, preceded by a glass matrix and chaotropic DNA extraction, was effective in detecting high numbers of ETEC in a variety of foods. Ninety percent of 121 spiked food samples yielded positive results. Samples of salsa from Guadalajara, Mexico and Houston, Texas were collected and underwent DNA extraction and PCR. All samples yielded negative results for both the heat-labile and heat-stable toxins. Samples were also subjected to oligonucleotide probe analysis and resulted in 5 samples positive for ETEC. Upon dilution testing, it was found that positive PCR results only occurred when 12,000 to 1,000,000 bacteria were present in 200 mg of food. Although the DNA extraction and PCR method has been shown to be both sensitive and specific in stool, similar results were not obtained in food samples. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BackgroundBacterial meningitis (BM) is characterized by an intense host inflammatory reaction, which contributes to the development of brain damage and neuronal sequelae. Activation of the kynurenine (KYN) pathway (KP) has been reported in various neurological diseases as a consequence of inflammation. Previously, the KP was shown to be activated in animal models of BM, and the association of the SNP AADAT¿+¿401C/T (kynurenine aminotransferase II - KAT II) with the host immune response to BM has been described. The aim of this study was to investigate the involvement of the KP during BM in humans by assessing the concentrations of KYN metabolites in the cerebrospinal fluid (CSF) of BM patients and their relationship with the inflammatory response compared to aseptic meningitis (AM) and non-meningitis (NM) groups.MethodsThe concentrations of tryptophan (TRP), KYN, kynurenic acid (KYNA) and anthranilic acid (AA) were assessed by HPLC from CSF samples of patients hospitalized in the Giselda Trigueiro Hospital in Natal (Rio Grande do Norte, Brazil). The KYN/TRP ratio was used as an index of indoleamine 2,3-dioxygenase (IDO) activity, and cytokines were measured using a multiplex cytokine assay. The KYNA level was also analyzed in relation to AADAT¿+¿401C/T genotypes.ResultsIn CSF from patients with BM, elevated levels of KYN, KYNA, AA, IDO activity and cytokines were observed. The cytokines INF-¿ and IL-1Ra showed a positive correlation with IDO activity, and TNF-¿ and IL-10 were positively correlated with KYN and KYNA, respectively. Furthermore, the highest levels of KYNA were associated with the AADAT¿+¿401 C/T variant allele.ConclusionThis study suggests a downward modulatory effect of the KP on CSF inflammation during BM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fucosidosis is a rare lysosomal storage disease. A 14-year-old girl is presented, with recurrent infections, progressive dystonic movement disorder and mental retardation with onset in early childhood. The clinical picture was also marked by mild morphologic features, but absent dysostosis multiplex and organomegaly. MRI images at 6.5 years of age were reminiscent of pallidal iron deposition ("eye-of-the-tiger" sign) seen in neurodegeneration with brain iron accumulation (NBIA) disorders. Progressively spreading angiokeratoma corporis diffusum led to the correct diagnosis. This case extends the scope of clinical and neuroradiological manifestations of fucosidosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, there is no systematic investigation of the association of short tandem repeat (STR) typing success rate in soft tissues with different signs of putrefaction. Herein, putrefaction was rated using a newly developed 19-parameter system in soft tissues from a collective of 68 decaying bodies, and DNA yield was determined in 408 samples. DNA integrity was rated using a self-devised pentaplex PCR generating an "integrity score" (Si ). STR typing success rate was then assessed for selected cases. DNA yield and Si differed significantly between tissues with kidney on average exhibiting the highest Si values. Statistical analysis revealed that nine parameters were significantly and positively correlated with Si . The observed values for each of these nine parameters were summed up to generate a putrefaction score (Sp ) for each sample. Our results show that STR typing success rate can be predicted based on Sp before expensive multiplex STR profiling is performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The copy number variation (CNV) in beta-defensin genes (DEFB) on human chromosome 8p23 has been proposed to contribute to the phenotypic differences in inflammatory diseases. However, determination of exact DEFB CN is a major challenge in association studies. Quantitative real-time PCR (qPCR), paralog ratio tests (PRT) and multiplex ligation-dependent probe amplification (MLPA) have been extensively used to determine DEFB CN in different laboratories, but inter-method inconsistencies were observed frequently. In this study we asked which one is superior among the three methods for DEFB CN determination. RESULTS We developed a clustering approach for MLPA and PRT to statistically correlate data from a single experiment. Then we compared qPCR, a newly designed PRT and MLPA for DEFB CN determination in 285 DNA samples. We found MLPA had the best convergence and clustering results of the raw data and the highest call rate. In addition, the concordance rates between MLPA or PRT and qPCR (32.12% and 37.99%, respectively) were unacceptably low with underestimated CN by qPCR. Concordance rate between MLPA and PRT (90.52%) was high but PRT systematically underestimated CN by one in a subset of samples. In these samples a sequence variant which caused complete PCR dropout of the respective DEFB cluster copies was found in one primer binding site of one of the targeted paralogous pseudogenes. CONCLUSION MLPA is superior to PRT and even more to qPCR for DEFB CN determination. Although the applied PRT provides in most cases reliable results, such a test is particularly sensitive to low-frequency sequence variations preferably accumulating in loci like pseudogenes which are most likely not under selective pressure. In the light of the superior performance of multiplex assays, the drawbacks of such single PRTs could be overcome by combining more test markers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Prostate cancer (PCa) is a very heterogeneous disease with respect to clinical outcome. This study explored differential DNA methylation in a priori selected genes to diagnose PCa and predict clinical failure (CF) in high-risk patients. METHODS A quantitative multiplex, methylation-specific PCR assay was developed to assess promoter methylation of the APC, CCND2, GSTP1, PTGS2 and RARB genes in formalin-fixed, paraffin-embedded tissue samples from 42 patients with benign prostatic hyperplasia and radical prostatectomy specimens of patients with high-risk PCa, encompassing training and validation cohorts of 147 and 71 patients, respectively. Log-rank tests, univariate and multivariate Cox models were used to investigate the prognostic value of the DNA methylation. RESULTS Hypermethylation of APC, CCND2, GSTP1, PTGS2 and RARB was highly cancer-specific. However, only GSTP1 methylation was significantly associated with CF in both independent high-risk PCa cohorts. Importantly, trichotomization into low, moderate and high GSTP1 methylation level subgroups was highly predictive for CF. Patients with either a low or high GSTP1 methylation level, as compared to the moderate methylation groups, were at a higher risk for CF in both the training (Hazard ratio [HR], 3.65; 95% CI, 1.65 to 8.07) and validation sets (HR, 4.27; 95% CI, 1.03 to 17.72) as well as in the combined cohort (HR, 2.74; 95% CI, 1.42 to 5.27) in multivariate analysis. CONCLUSIONS Classification of primary high-risk tumors into three subtypes based on DNA methylation can be combined with clinico-pathological parameters for a more informative risk-stratification of these PCa patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trichinellosis is one of the most important foodborne parasitic zoonoses, caused by nematodes of the genus Trichinella. Pigs and other domestic and wild animals, including red foxes (Vulpes vulpes), are sources of Trichinella infection for human beings. Trichinella britovi is the major agent of infection in sylvatic animals and the most important species circulating in the European wildlife. The present study aimed at assessing Trichinella spp. infection in red foxes from the North of Portugal. Forty-seven carcasses of wild red foxes shot during the official hunting season or killed in road accidents were obtained between November 2008 and March 2010. In order to identify the presence of Trichinella spp. larvae in red foxes, an individual artificial digestion was performed using approximately 30g of muscle samples. Larvae of Trichinella spp. were detected in one (2.1%) out of the 47 assessed foxes. After a multiplex polymerase chain reaction analysis, T. britovi was molecularly identified as the infecting species. The recognition of T. britovi in a red fox confirms that a sylvatic cycle is present in the North of Portugal and that the local prevalence of Trichinella infection in wildlife must not be ignored due to its underlying zoonotic risks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystem functioning in grasslands is regulated by a range of biotic and abiotic factors, and the role of microbial communities in regulating ecosystem function has been the subject of much recent scrutiny. However, there are still knowledge gaps regarding the impacts of rainfall and vegetation change upon microbial communities and the implications of these changes for ecosystem functioning. We investigated this issue using data from an experimental mesotrophic grassland study in south-east England, which had been subjected to four years of rainfall and plant functional composition manipulations. Soil respiration, nitrogen and phosphorus stocks were measured, and the abundance and community structure of soil microbes were characterised using quantitative PCR and multiplex-TRFLP analysis, respectively. Bacterial community structure was strongly related to the plant functional composition treatments, but not the rainfall treatment. However, there was a strong effect of both rainfall change and plant functional group upon bacterial abundance. There was also a weak interactive effect of the two treatments upon fungal community structure, although fungal abundance was not affected by either treatment. Next, we used a statistical approach to assess whether treatment effects on ecosystem function were regulated by the microbial community. Our results revealed that ecosystem function was influenced by the experimental treatments, but was not related to associated changes to the microbial community. Overall, these results indicate that changes in fungal and bacterial community structure and abundance play a relatively minor role in determining grassland ecosystem function responses to precipitation and plant functional composition change, and that direct effects on soil physical and chemical properties and upon plant and microbial physiology may play a more important role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on bacterial genomic data, we developed a one-step multiplex PCR assay to identify Salmonella and simultaneously differentiate the two invasive avian-adapted S. enterica serovar Gallinarum biotypes Gallinarum and Pullorum, and the most frequent, specific, and asymptomatic colonizers of chickens, serovars Enteritidis, Heidelberg, and Kentucky.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sepsis is an infection-induced systemic inflammatory syndrome, potentially causing organ failure. We previously showed attenuating effects on inflammation, thrombogenicity and haemodynamics by inhibiting the Toll-like receptor co-factor CD14 and complement factor C5 in a porcine Escherichia coli-induced sepsis model. The present study explored the effect on organ inflammation in these pigs. Tissue samples were examined from the combined treatment group (n = 8), the positive (n = 8) and negative (n = 6) control groups after 4h of sepsis. Inflammatory biomarkers were measured using ELISA, multiplex and qPCR analysis. Combined inhibition of C5 and CD14 markedly attenuated IL-1β by 31-66% (P < 0.05) and IL-6 by 54-96% (P < 0.01) in liver, kidney, lung and spleen; IL-8 by 65-100% in kidney, lung, spleen, and heart (P < 0.05) and MCP-1 by 46-69% in liver, kidney, spleen and heart (P < 0.05). Combined inhibition significantly attenuated tissue factor mRNA upregulation in spleen (P < 0.05) and IP-10 mRNA upregulation in four out of five organs. Finally, C5aR mRNA downregulation was prevented in heart and kidney (P < 0.05). Combined inhibition of C5 and CD14 thus markedly attenuated inflammatory responses in all organs examined. The anti-inflammatory effects observed in lung and heart may explain the delayed haemodynamic disturbances observed in septic pigs receiving combined inhibition of C5 and CD14.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Large field studies in travelers' diarrhea (TD) in multiple destinations are limited by the need to perform stool cultures on site in a timely manner. A method for the collection, transport and storage of fecal specimens that does not require immediate processing, refrigeration and is stable for months would be advantageous. ^ Objectives. Determine if enteric pathogen bacterial DNA can be identified in cards routinely used for evaluation of fecal occult blood. ^ Methods. U.S. students traveling to Mexico in 2005-07 were followed for occurrence of diarrheal illness. When ill, students provided a stool specimen for culture and occult blood by the standard method. Cards were then stored at room temperature prior to DNA extraction. A multiplex fecal PCR was performed to identify enterotoxigenic Escherichia coli and enteroaggregative E. coli (EAEC) in DNA extracted from stools and occult blood cards. ^ Results. Significantly more EAEC cases were identified by PCR done in DNA extracted from cards (49%) or from frozen feces (40%) than by culture followed by HEp-2 adherence assays (13%). Similarly more ETEC cases were detected in card DNA (38%) than fecal DNA (30%) or culture followed by hybridization (10%). Sensitivity and specificity of the card test was 75% and 62%, respectively, and 50% and 63%, respectively, when compared to EAEC and ETEC culture, respectively, and 53% and 51%, respectively compared to EAEC multiplex fecal PCR and 56% and 70%, respectively, compared to ETEC multiplex fecal PCR. ^ Conclusions. DNA extracted from fecal cards used for detection of occult blood is of use in detecting enteric pathogens. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MAX dimerization protein 1 (MAD1) is a basic-helix-loop-helix transcription factors that recruits transcription repressor such as HDAC to suppress target genes transcription. It antagonizes to MYC because the promoter binding sites for MYC are usually also serve as the binding sites for MAD1 so they compete for it. However, the mechanism of the switch between MYC and MAD1 in turning on and off of genes' transcription is obscure. In this study, we demonstrated that AKT-mediated MAD1 phosphorylation inhibits MAD1 transcription repression function. The association between MAD1 and its target genes' promoter is reduced after been phosphorylated by AKT; therefore, consequently, allows MYC to occupy the binding site and activates transcription. Mutation of such phosphorylation site abrogates the inhibition from AKT. In addition, functional assays demonstrated that AKT suppressed MAD1-mediated transcription repression of its target genes hTERT and ODC. Cell cycle and cell growth were also been released from inhibition by MAD1 in the presents of AKT. Taken together, our study suggests that MAD1 is a novel substrate of AKT and AKT-mediated MAD1 phosphorylation inhibits MAD1function; therefore, activates MAD1 target genes expression. ^ Furthermore, analysis of protein-protein interaction is indispensable for current molecular biology research, but multiplex protein dynamics in cells is too complicated to be analyzed by using existing biochemical methods. To overcome the disadvantage, we have developed a single molecule level detection system with nanofluidic chip. Single molecule was analyzed based on their fluorescent profile and their profiles were plotted into 2 dimensional time co-incident photon burst diagram (2DTP). From this 2DTP, protein complexes were characterized. These results demonstrate that the nanochannel protein detection system is a promising tool for future molecular biology. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clubfoot is a common, complex birth defect affecting 4,000 newborns in the United States and 135,000 world-wide each year. The clubfoot deformity is characterized by inward and rigid downward displacement of one or both feet, along with persistent calf muscle hypoplasia. Despite strong evidence for a genetic liability, there is a limited understanding of the genetic and environmental factors contributing to the etiology of clubfoot. The studies described in this dissertation were performed to identify variants and/or genes associated with clubfoot. Genome-wide linkage scan performed on ten multiplex clubfoot families identified seven new chromosomal regions that provide new areas to search for clubfoot genes. Troponin C (TNNC2) the strongest candidate gene, located in 20q12-q13.11, is involved in muscle contraction. Exon sequencing of TNNC2 did not identify any novel coding variants. Interrogation of fifteen muscle contraction genes found strong associations with SNPs located in potential regulatory regions of TPM1 (rs4075583 and rs3805965), TPM2 (rs2025126 and rs2145925) and TNNC2 (rs383112 and rs437122). In previous studies, a strong association was found with rs3801776 located in the basal promoter of HOXA9, a gene also involved in muscle development and patterning. Altogether, this data suggests that SNPs located in potential regulatory regions of genes involved in muscle development and function could alter transcription factor binding leading to changes in gene expression. Functional analysis of 3801776/HOXA9, rs2025126/TPM2 and rs2145925/TPM2 showed altered protein binding, which significantly influenced promoter activity. Although the ancestral allele (G) of rs4075583/TPM1 creates a DNA-protein complex, it did not affect TPM1 promoter activity. However and importantly, in the context of a haplotype, rs4075583/G significantly decreased TPM1 promoter activity. These results suggest dysregulation of multiple skeletal muscle genes, TPM1, TPM2, TNNC2 and HOXA9, working in concert may contribute to clubfoot. However, specific allelic combinations involving these four regulatory SNPs did not confer a significantly higher risk for clubfoot. Other combinations of these variants are being evaluated. Moreover, these variants may interact with yet to be discovered variants in other genes to confer a higher clubfoot risk. Collectively, we show novel evidence for the role of skeletal muscle genes in clubfoot indicating that there are multiple genetic factors contributing to this complex birth defect.