927 resultados para Multiple Change-point Analysis
Resumo:
BACKGROUND Multiple sclerosis (MS) is a neurodegenerative, autoimmune disease of the central nervous system. Genome-wide association studies (GWAS) have identified over hundred polymorphisms with modest individual effects in MS susceptibility and they have confirmed the main individual effect of the Major Histocompatibility Complex. Additional risk loci with immunologically relevant genes were found significantly overrepresented. Nonetheless, it is accepted that most of the genetic architecture underlying susceptibility to the disease remains to be defined. Candidate association studies of the leukocyte immunoglobulin-like receptor LILRA3 gene in MS have been repeatedly reported with inconsistent results. OBJECTIVES In an attempt to shed some light on these controversial findings, a combined analysis was performed including the previously published datasets and three newly genotyped cohorts. Both wild-type and deleted LILRA3 alleles were discriminated in a single-tube PCR amplification and the resulting products were visualized by their different electrophoretic mobilities. RESULTS AND CONCLUSION Overall, this meta-analysis involved 3200 MS patients and 3069 matched healthy controls and it did not evidence significant association of the LILRA3 deletion [carriers of LILRA3 deletion: p = 0.25, OR (95% CI) = 1.07 (0.95-1.19)], even after stratification by gender and the HLA-DRB1*15:01 risk allele.
Resumo:
BACKGROUND: The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. RESULTS: Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFbeta, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFbeta. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. CONCLUSION: This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications
Resumo:
We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the artefactual concerns encountered in using heterologous systems are totally excluded.
Resumo:
Background/Aims. Recently, peripheral blood mononuclear cell transcriptome analysis has identified genes that are upregulated in relapsing minimal-change nephrotic syndrome (MCNS). In order to investigate protein expression in peripheral blood mononuclear cells (PBMC) from relapsing MCNS patients, we performed proteomic comparisons of PBMC from patients with MCNS in relapse and controls. METHODS: PBMC from a total of 20 patients were analysed. PBMC were taken from five patients with relapsing MCNS, four in remission, five patients with other glomerular diseases and six controls. Two dimensional electrophoresis was performed and proteome patterns were compared. RESULTS: Automatic heuristic clustering analysis allowed us to pool correctly the gels from the MCNS patients in the relapse and in the control groups. Using hierarchical population matching, nine spots were found to be increased in PBMC from MCNS patients in relapse. Four spots were identified by mass spectrometry. Three of the four proteins identified (L-plastin, alpha-tropomyosin and annexin III) were cytoskeletal-associated proteins. Using western blot and immunochemistry, L-plastin and alpha-tropomyosin 3 concentrations were found to be enhanced in PBMC from MCNS patients in relapse. Conclusions. These data indicate that a specific proteomic profile characterizes PBMC from MCNS patients in relapse. Proteins involved in PBMC cytoskeletal rearrangement are increased in relapsing MCNS. We hypothesize that T-cell cytoskeletal rearrangement may play a role in the pathogenesis of MCNS by altering the expression of cell surface receptors and by modifying the interaction of these cells with glomerular cells.
Resumo:
Geometries, vibrational frequencies, and interaction energies of the CNH⋯O3 and HCCH⋯O3 complexes are calculated in a counterpoise-corrected (CP-corrected) potential-energy surface (PES) that corrects for the basis set superposition error (BSSE). Ab initio calculations are performed at the Hartree-Fock (HF) and second-order Møller-Plesset (MP2) levels, using the 6-31G(d,p) and D95++(d,p) basis sets. Interaction energies are presented including corrections for zero-point vibrational energy (ZPVE) and thermal correction to enthalpy at 298 K. The CP-corrected and conventional PES are compared; the unconnected PES obtained using the larger basis set including diffuse functions exhibits a double well shape, whereas use of the 6-31G(d,p) basis set leads to a flat single-well profile. The CP-corrected PES has always a multiple-well shape. In particular, it is shown that the CP-corrected PES using the smaller basis set is qualitatively analogous to that obtained with the larger basis sets, so the CP method becomes useful to correctly describe large systems, where the use of small basis sets may be necessary
Resumo:
We describe a simple method to automate the geometric optimization of molecular orbital calculations of supermolecules on potential surfaces that are corrected for basis set superposition error using the counterpoise (CP) method. This method is applied to the H-bonding complexes HF/HCN, HF/H2O, and HCCH/H2O using the 6-31G(d,p) and D95 + + (d,p) basis sets at both the Hartree-Fock and second-order Møller-Plesset levels. We report the interaction energies, geometries, and vibrational frequencies of these complexes on the CP-optimized surfaces; and compare them with similar values calculated using traditional methods, including the (more traditional) single point CP correction. Upon optimization on the CP-corrected surface, the interaction energies become more negative (before vibrational corrections) and the H-bonding stretching vibrations decrease in all cases. The extent of the effects vary from extremely small to quite large depending on the complex and the calculational method. The relative magnitudes of the vibrational corrections cannot be predicted from the H-bond stretching frequencies alone
Resumo:
In this work we describe the usage of bilinear statistical models as a means of factoring the shape variability into two components attributed to inter-subject variation and to the intrinsic dynamics of the human heart. We show that it is feasible to reconstruct the shape of the heart at discrete points in the cardiac cycle. Provided we are given a small number of shape instances representing the same heart atdifferent points in the same cycle, we can use the bilinearmodel to establish this. Using a temporal and a spatial alignment step in the preprocessing of the shapes, around half of the reconstruction errors were on the order of the axial image resolution of 2 mm, and over 90% was within 3.5 mm. From this, weconclude that the dynamics were indeed separated from theinter-subject variability in our dataset.
Resumo:
This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over onecardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneousmorphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantomexperiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.
Resumo:
We offer new evidence on multi-level determinants of the gender division of housework. Using data from the 2004 European Social Survey (ESS) for 26 European, we study the micro and macro-level factors which increase the likelihood of men doing an equal or greater share of housework than their female partners. A sample of 11,915 young men and women is analysed with a multi-level logistic regression in order to test at individual level the classic relative-income, time-availability and gender-role values, and a new couple conflict hypothesis. At individual level we find significant relationships between relative resources, values, couple's disagreement, and the division of housework which support more economic dependency than "doing gender" perspectives. At the macro-level, we find important composition effects and also support for gender empowerment, family model and social stratification explanations of cross-country differences.
Resumo:
When continuous data are coded to categorical variables, two types of coding are possible: crisp coding in the form of indicator, or dummy, variables with values either 0 or 1; or fuzzy coding where each observation is transformed to a set of "degrees of membership" between 0 and 1, using co-called membership functions. It is well known that the correspondence analysis of crisp coded data, namely multiple correspondence analysis, yields principal inertias (eigenvalues) that considerably underestimate the quality of the solution in a low-dimensional space. Since the crisp data only code the categories to which each individual case belongs, an alternative measure of fit is simply to count how well these categories are predicted by the solution. Another approach is to consider multiple correspondence analysis equivalently as the analysis of the Burt matrix (i.e., the matrix of all two-way cross-tabulations of the categorical variables), and then perform a joint correspondence analysis to fit just the off-diagonal tables of the Burt matrix - the measure of fit is then computed as the quality of explaining these tables only. The correspondence analysis of fuzzy coded data, called "fuzzy multiple correspondence analysis", suffers from the same problem, albeit attenuated. Again, one can count how many correct predictions are made of the categories which have highest degree of membership. But here one can also defuzzify the results of the analysis to obtain estimated values of the original data, and then calculate a measure of fit in the familiar percentage form, thanks to the resultant orthogonal decomposition of variance. Furthermore, if one thinks of fuzzy multiple correspondence analysis as explaining the two-way associations between variables, a fuzzy Burt matrix can be computed and the same strategy as in the crisp case can be applied to analyse the off-diagonal part of this matrix. In this paper these alternative measures of fit are defined and applied to a data set of continuous meteorological variables, which are coded crisply and fuzzily into three categories. Measuring the fit is further discussed when the data set consists of a mixture of discrete and continuous variables.
Resumo:
INTRODUCTION: Quitting smoking is associated with weight gain, which may threaten motivation to engage or sustain a quit attempt. The pattern of weight gained by smokers treated according to smoking cessation guidelines has been poorly described. We aimed to determine the weight gained after smoking cessation and its predictors, by smokers receiving individual counseling and nicotine replacement therapies for smoking cessation. METHODS: We performed an ancillary analysis of a randomized controlled trial assessing moderate physical activity as an aid for smoking cessation in addition to standard treatment in sedentary adult smokers. We used mixed longitudinal models to describe the evolution of weight over time, thus allowing us to take every participant into account. We also fitted a model to assess the effect of smoking status and reported use of nicotine replacement therapy at each time point. We adjusted for intervention group, sex, age, nicotine dependence, and education. RESULTS: In the whole cohort, weight increased in the first 3 months, and stabilized afterwards. Mean 1-year weight gain was 3.3kg for women and 3.9kg for men (p = .002). Higher nicotine dependence and male sex were associated with more weight gained during abstinence. Age over median was associated with continuing weight gain during relapse. There was a nonsignificant trend toward slower weight gain with use of nicotine replacement therapies. CONCLUSION: Sedentary smokers receiving a standard smoking cessation intervention experience a moderate weight gain, limited to the first 3 months. Older age, male sex, and higher nicotine dependence are predictors of weight gain.