991 resultados para Mort Creek Site Complex
Resumo:
The targeting of topically applied drug molecules into tissues below a site of application requires an understanding of the complex interrelationships between the drug, its formulation, the barrier properties of the skin, and the physiological processes occurring below the skin that are responsible for drug clearance from the site, tissue, and/or systemic distribution and eventual elimination. There is still a certain amount of controversy over the ability of topically applied drugs to penetrate into deeper tissues by diffusion or whether this occurs by redistribution in the systemic circulation. The major focus of our work in this area has been in determining how changes in drug structure and physicochemical properties, such as protein binding and lipophilicity, affect drug clearance into the local dermal microcirculation and lymphatics, as well as subsequent distribution into deeper tissues below an application site. The present study outlines our recent thinking on the drug molecule optimal physical attributes, in terms of plasma and tissue partitioning behaviour, that offer the greatest potential for deep tissue targeting. Drug Dev. Res. 46:309-315, 1999. (C) 1999 Wiley-Liss, Inc.
Resumo:
The co-evolution of papillomaviruses (PV) and their mammalian hosts has produced mechanisms by which PV might avoid specific and non-specific host immune responses. Low level expression of PV proteins in infected basal epithelial cells, together with an absence of inflammation and of virus-induced cell lysis, restricts the opportunity for effective PV protein presentation to immunocytes by dendritic cells. Additionally, PV early proteins, by a range of mechanisms, may restrict the efficacy of antigen presentation by these cells. Should an immune response be induced to PV antigens, resting keratinocytes (KC) appear resistant to interferon-gamma-enhanced mechanisms of cytotoxic T-lymphocyte (CTL)-mediated lysis, and expression of PV antigens by resting KC can tolerise PV-specific CTL. Thus, KC, in the absence of inflammation, may represent an immunologically privileged site for PV infection. Together, these mechanisms play a parr in allowing persistence of PV-induced proliferative skin lesions for months to years, even in immunocompetent hosts.
Resumo:
High-resolution crystal structures are described for seven macrocycles complexed with HIV-1 protease (HIVPR). The macrocycles possess two amides and an aromatic group within 15-17 membered rings designed to replace N- or C-terminal tripeptides from peptidic inhibitors of HIVPR. Appended to each macrocycle is a transition state isostere and either an acyclic peptide, nonpeptide, or another macrocycle. These cyclic analogues are potent inhibitors of HIVPR, and the crystal structures show them to be structural mimics of acyclic peptides, binding in the active site of HIVPR via the same interactions. Each macrocycle is restrained to adopt a P-strand conformation which is preorganized for protease binding. An unusual feature of the binding of C-terminal macrocyclic inhibitors is the interaction between a positively charged secondary amine and a catalytic aspartate of HIVPR. A bicyclic inhibitor binds similarly through its secondary amine that lies between its component N-terminal and C-terminal macrocycles. In contrast, the corresponding tertiary amine of the N-terminal macrocycles does not interact with the catalytic aspartates. The amine-aspartate interaction induces a 1.5 Angstrom N-terminal translation of the inhibitors in the active site and is accompanied by weakened interactions with a water molecule that bridges the ligand to the enzyme, as well as static disorder in enzyme flap residues. This flexibility may facilitate peptide cleavage and product dissociation during catalysis. Proteases [Aba(67,95)]HIVPR and [Lys(7),Ile(33),Aba(67,95)]- HIVPR used in this work were shown to have very similar crystal structures.
Resumo:
Previous studies have demonstrated that 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and several other aroylhydrazone chelators possess anti-neoplastic activity due to their ability to bind intracellular iron. In this study we have examined the structure and properties of NIH and its Fe-III complex in order to obtain further insight into its anti-tumour activity. Two tridentate NIH ligands deprotonate upon coordination to Fe-III in a meridional fashion to form a distorted octahedral, high-spin complex. Solution electrochemistry of [Fe(NIH-H)(2)](+) shows that the trivalent oxidation state is dominant over a wide potential range and that the Fe-II analogue is not a stable form of this complex. The fact that [Fe(NIH-H)(2)](+) cannot-cycle between the Fe-II and Fe-III states suggests that the production of toxic free- radical species, e.g. OH. or O2(.-),is not part of this ligand's cytotoxic action. This suggestion is supported by cell culture experiments demonstrating that the addition of Fe-III to NIH prevents its anti-proliferative effect. The chemistry of this chelator and its Fe-III complex are discussed in the context of understanding its anti-tumour activity.
Resumo:
Sulfonation is an important metabolic process involved in the excretion and in some cases activation of various endogenous compounds and xenobiotics. This reaction is catalyzed by a family of enzymes named sulfotransferases. The cytosolic human sulfotransferases SULT1A1 and SULT1A3 have overlapping yet distinct substrate specificities. SULT1A1 favors simple phenolic substrates such as p-nitrophenol, whereas SULT1A3 prefers monoamine substrates such as dopamine. In this study we have used a variety of phenolic substrates to functionally characterize the role of the amino acid at position 146 in SULT1A1 and SULT1A3. First, the mutation A146E in SULT1A1 yielded a SULT1A3-like protein with respect to the Michaelis constant for simple phenols. The mutation E146A in SULT1A3 resulted in a SULT1A1-like protein with respect to the Michaelis constant for both simple phenols and monoamine compounds. When comparing the specificity of SULT1A3 toward tyramine with that for p-ethylphenol (which differs from tyramine in having no amine group on the carbon side chain), we saw a 200-fold preference for tyramine. The kinetic data obtained with the E146A mutant of SULT1A3 for these two substrates clearly showed that this protein preferred substrates without an amine group attached. Second, changing the glutamic acid at position 146 of SULT1A3 to a glutamine, thereby neutralizing the negative charge at this position, resulted in a 360-fold decrease in the specificity constant for dopamine. The results provide strong evidence that residue 146 is crucial in determining the substrate specificity of both SULT1A1 and SULT1A3 and suggest that there is a direct interaction between glutamic acid 146 in SULT1A3 and monoamine substrates.
Resumo:
The new macrocyclic ligand trans-6-(9-anthracenylmethylamino)-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecan-13-amine has been synthesized and characterised as its copper(II) complex and the crystal structure of this complex has been determined. Fluorescence of the anthracenyl group of the macrocycle is quenched in its free base form and when complexed with Cu-II. Fluorescence returns when Lewis acids such as H+ and Zn-II are added to solutions of the ligand, indicating that photoinduced electron transfer from the amine lone pairs is responsible for fluorescence quenching in the free base form. By contrast, fluorescence of the complex is quenched by intramolecular electronic energy transfer.
Resumo:
Primary olfactory neurons project their axons to the olfactory bulb, where they terminate in discrete loci called glomeruli. All neurons expressing the same odorant receptor appear to terminate in a few glomeruli in each olfactory bulb. In the P2-IRES-tau-LacZ line of transgenic mice, LacZ is expressed in the perikarya and axons of primary olfactory neurons that express the P2 odorant receptor. In the present study, we examined the developmental appearance of P2 neurons, the topographical targeting of P2 axons, as well as the formation of P2 glomeruli in the olfactory bulb. P2 axons were first detected in the olfactory nerve fiber layer at embryonic day 14.5 (E14.5), and by E15.5 these axons terminated in a broad locus in the presumptive glomerular layer. During the next 5 embryonic days, the elongated cluster of axons developed into discrete glomerulus-like structures. In many cases, glomeruli appeared as pairs, which were initially connected by a fascicle of P2 axons. This connection was lost by postnatal day 7.5, and double glomeruli at the same locus were observed in 85% of adult animals. During the early postnatal period, there was considerable mistargeting of P2 axons. In some cases P2 axons entered inappropriate glomeruli or continued to grow past the glomerular layer into the deeper layers of the olfactory bulb. These aberrant axons were not observed in adult animals. These results indicate that olfactory axons exhibit errors while converging onto a specific glomerulus and suggest that guidance cues may be diffusely distributed at target sites in the olfactory bulb.
Resumo:
The bis(mu-hydroxo) complex [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)](PF6)(2) (Me-2[9]aneN(2)S = N,N'-dimethyl-1-thia-4,7-diazacyclononane) results after reaction of [Cu(Me-2[9]aneN(2)S)(MeCN)] (PF6) with dioxygen at -78 degrees C in acetonitrile. The complex has been characterized by X-ray crystallography: orthorhombic, space group Pnma, with a 18.710(3), b 16.758(2), c 9.593(2) Angstrom, and Z = 4. The structure refined to a final R value of 0.051. The complex contains two copper(II) ions bridged by two hydroxo groups with Cu ... Cu 2.866(1) Angstrom. The solid-state magnetic susceptibility study reveals ferromagnetic coupling, the fitting parameters being J = +46+/-5 cm(-1), g = 2.01+/-0.01 and theta = -0.58+/-0.03 K. The frozen-solution e.p.r. spectrum in dimethyl sulfoxide is characteristic of a monomeric copper(II) ion (g(parallel to) 2.300, g(perpendicular to) 2.063; A(parallel to) 156.2 x 10(-4) cm(-1), A(perpendicular to) 9.0 x 10(-4) cm(-1)) with an N2O2 donor set. Thioether coordination to the copper(II) in solution is supported by the presence of an intense absorption assigned to a sigma(S)-->Cu-II LMCT transition at c. 34000 cm(-1). The single-crystal spectrum of [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)] (PF6)(2) (273 K) reveals d-->d transitions at 14500 and 18300 cm(-1) and a weak pi(S)-->Cu-II charge-transfer band at approximately 25000 cm(-1).
Resumo:
Regulation of protein function is vital for the control of cellular processes. Proteins are often regulated by allosteric mechanisms, in which effecters bind to regulatory sites distinct from the active sites and alter protein function. Intrasteric regulation, directed at the active site and thus the counterpart of allosteric control, is now emerging as an important regulatory mechanism.
Resumo:
A series of inhibitors of beta-amyloid formation have been developed based on the beta-secretase cleavage site (VNL-DA) of the Swedish mutant Amyloid Precursor Protein. A simple tripeptide aldehyde was found to be the most potent (IC50 = 700 nM) in the series displaying an inhibitory profile which is different from reported inhibitors of beta-amyloid formation. (C) 2000 Academic Press.
Resumo:
It has been proposed that common aphidicolin-inducible fragile sites, in general, predispose to specific chromosomal breakage associated with deletion, amplification, and/or translocation in certain forms of cancer. Although this appears to be the case for the fragile site FRA3B and may be the case for FRA7G, it is not Set clear whether this association is a general property of this class of fragile site. The major aim of the present study was to determine whether the FRA16D chromosomal fragile site locus has a role to play in predisposing DNA sequences within and adjacent to the fragile site to DNA instability (such as deletion or translocation), which could lead to or be associated with neoplasia. We report the localization of FRA16D within a contig of cloned DNA and demonstrate that this fragile site coincides with a region of homozygous deletion in a gastric adenocarcinoma cell line and is bracketed by translocation breakpoints in multiple myeloma, as reported previously (Chesi, M., et al., Blood, 91: 4457-4463, 1998), Therefore, given similar findings at the FRA3B and FRA7G fragile sites, it is likely that common aphidicolin-inducible fragile sites exhibit the general property of localized DNA instability in cancer cells.
Resumo:
C5a is implicated as a pathogenic factor in a wide range of immunoinflammatory diseases, including sepsis and immune complex disease, Agents that antagonize the effects of C5a could be useful in these diseases. We have developed some novel C5a antagonists and have determined the acute anti-inflammatory properties of a new small molecule C5a receptor antagonist against C5a- and LPS-induced neutrophil adhesion and cytokine expression, as well as against some hallmarks of the reverse Arthus reaction in rats. We found that a single i.v. dose (1 mg/kg) of this antagonist inhibited both C5a- and LPS-induced neutropenia and elevated levels of circulating TNF-alpha, as well as polymorphonuclear leukocyte migration, increased TNF-alpha levels and vascular leakage at the site of immune complex deposition. These results indicate potent anti-inflammatory activities of a new C5a receptor antagonist and provide more evidence for a key early role for C5a in sepsis and the reverse Arthus reaction. The results support a role for antagonists of C5a receptors in the therapeutic intervention of immunoinflammatory disease states such as sepsis and immune complex disease.
Resumo:
Fluorescence in situ hybridization of a tile path of DNA subclones has previously enabled the cytogenetic definition of the minimal DNA sequence which spans the FRA16D common chromosomal fragile site, located at 16q23.2. Homozygous deletion of the FRA16D locus has been reported in adenocarcinomas of stomach, colon, lung and ovary. We have sequenced the 270 kb containing the FRA16D fragile site and the minimal homozygously deleted region in tumour cells. This sequence enabled localization of some of the tumour cell breakpoints to regions which contain AT-rich secondary structures similar to those associated with the FRA10B and FRA16B rare fragile sites. The FRA16D DNA sequence also led to the identification of an alternatively spliced gene, named FOR (fragile site FRA16D oxidoreductase), exons of which span both the fragile site and the minimal region of homozygous deletion. In addition, the complete DNA sequence of the FRA16D-containing FOR intron reveals no evidence of additional authentic transcripts. Alternatively spliced FOR transcripts (FOR I, FOR II and FOR III) encode proteins which share N-terminal WW domains and differ at their C-terminus, with FOR III having a truncated oxidoreductase domain. FRA16D-associated deletions selectively affect the FOR gene transcripts. Three out of five previously mapped translocation breakpoints in multiple myeloma are also located within the FOR gene. FOR is therefore the principle genetic target for DNA instability at 16q23.2 and perturbation of FOR function is likely to contribute to the biological consequences of DNA instability at FRA16D in cancer cells.
Resumo:
The cloacal complex of Crocodylus porosus is composed of three chambers (proctodaeum, urodaeum, and coprodaeum) separated by tight, muscular sphincters. The proctodaeum is proximal to the cloacal vent and houses the genitalia. The urodaeum is the largest chamber, is capable of storing large quantities of urine, and is lined with an epithelium with the capacity for transepithelial water and ion exchange. The coprodaeum, the most orad cloacal chamber, is a small, only marginally expandable chamber that has an epithelium composed almost entirely of mucus-secreting cells. The coprodaeum and lower intestine are reported to be the site(s) for urine modification in birds and bladderless lizards. A radiographic trace of urine storage in C. porosus kept for 2 months under hyperosmotic conditions showed no signs of retrograde movement of urine into the coprodaeum or rectum. Instead, urine was stored in the urodaeum of C. porosus. Examination of the mucosal surface of the urodaeum by SEM showed a plastic response to environmental salinity, with a possible increase in surface area in animals kept in hyperosmotic water compared with animals from fresh water. We propose the urodaeum as the primary site for postrenal modification of urine in C, porosus. (C) 2000 Wiley-Liss, Inc.
Resumo:
NMR solution structures are reported for two mutants (K16E, K16F) of the soluble amyloid beta peptide A beta(1-28). The structural effects of these mutations of a positively charged residue to anionic and hydrophobic residues at the alpha-secretase cleavage site (Lys16-Leu17) were examined in the membrane-simulating solvent aqueous SDS micelles. Overall the three-dimensional structures were similar to that for the native A beta(1-28) sequence in that they contained an unstructured N-terminus and a helical C-terminus. These structural elements are similar to those seen in the corresponding regions of full-length A beta peptides A beta(1-40) and A beta(1-42), showing that the shorter peptides are valid model systems. The K16E mutation, which might be expected to stabilize the macrodipole of the helix, slightly increased the helix length (residues 13-24) relative to the K16F mutation, which shortened the helix to between residues 16 and 24. The observed sequence-dependent control over conformation in this region provides an insight into possible conformational switching roles of mutations in the amyloid precursor protein from which A beta peptides are derived. In addition, if conformational transitions from helix to random coil to sheet precede aggregation of A beta peptides in vivo, as they do in vitro, the conformation-inducing effects of mutations at Lys16 may also influence aggregation and fibril formation. (C) 2000 Academic Press.