914 resultados para Monitoring System
Resumo:
Background: Flu vaccine composition is reformulated on a yearly basis. As such, the vaccine effectiveness (VE) from previous seasons cannot be considered for subsequent years, and it is necessary to monitor the VE for each season. This study (MonitorEVA- monitoring vaccine effectiveness) intends to evaluate the feasibility of using the national influenza surveillance system (NISS) for monitoring the influenza VE. Material and methods: Data was collected within NISS during 2004 to 2014 seasons. We used a case-control design where laboratory confirmed incident influenza like illness (ILI) patients (cases) were compared to controls (ILI influenza negative). Eligible individuals consisted on all aged individuals that consult a general practitioner or emergency room with ILI symptoms with a swab collected within seven days of symptoms onset. VE was estimated as 1- odds ratio of being vaccinated in cases versus controls adjusted for age and month of onset by logistic regression. Sensitivity analyses were conducted to test possible effect of assumptions on vaccination status, ILI definition and timing of swabs (<3 days after onset). Results: During the 2004-2014 period, a total of 5302 ILI patients were collected but 798 ILI were excluded for not complying with inclusion criteria. After data restriction the sample size in both groups was higher than 148 individuals/ season; minimum sample size needed to detect a VE of at least 50% considering a level of significance of 5% and 80% power. Crude VE point estimates were under 45% in 2004/05, 2005/06, 2011/12 and 2013/14 season; between 50%-70% in 2006/07, 2008/09 and 2010/11 seasons, and above 70% in 2007/08 and 2012/13 season. From season 2006/07 to 2013/14, all crude VE estimates were statistically significant. After adjustment for age group and month of onset, the VE point estimates decreased and only 2008/09, 2012/13 and 2013/14 seasons were significant. Discussion and Conclusions: MonitorEVA was able to provide VE estimates for all seasons, including the pandemic, indicating if the VE was higher than 70% and less than 50%. When comparing with other observational studies, MonitorEVA estimates were comparable but less precise and VE estimates were in accordance with the antigenic match of the circulating virus/ vaccine strains. Given the sensitivity results, we propose a MonitorEVA based on: a) Vaccination status defined independently of number of days between vaccination and symptoms onset; b) use of all ILI data independent of the definition; c) stratification of VE according to time between onset and swab (< 3 and ≥3 days).
Resumo:
Mode of access: Internet.
Resumo:
The Steering Committee recognizes that the Departments may need to implement reviews necessary to address specific Federal requirements and that while consolidated reporting should be used when possible, the review and reporting processes should facilitate the ability to garner Federal funding. However, the analysis thus far confirms the need for change and a significant potential to reduce redundant monitoring and reporting. At the end of this Executive Summary, there is a summary presentation, including a timeline and progress indicators, that gives more details on these recommendations.
Resumo:
Includes index.
Resumo:
"September 1979."
Resumo:
In view of the increasingly complexity of services logic and functional requirements, a new system architecture based on SOA was proposed for the equipment remote monitoring and diagnosis system. According to the design principles of SOA, different levels and different granularities of services logic and functional requirements for remote monitoring and diagnosis system were divided, and a loosely coupled web services system was built. The design and implementation schedule of core function modules for the proposed architecture were presented. A demo system was used to validate the feasibility of the proposed architecture.
Resumo:
Monitoring is essential for conservation of sites, but capacity to undertake it in the field is often limited. Data collected by remote sensing has been identified as a partial solution to this problem, and is becoming a feasible option, since increasing quantities of satellite data in particular are becoming available to conservationists. When suitably classified, satellite imagery can be used to delineate land cover types such as forest, and to identify any changes over time. However, the conservation community lacks (a) a simple tool appropriate to the needs for monitoring change in all types of land cover (e.g. not just forest), and (b) an easily accessible information system which allows for simple land cover change analysis and data sharing to reduce duplication of effort. To meet these needs, we developed a web-based information system which allows users to assess land cover dynamics in and around protected areas (or other sites of conservation importance) from multi-temporal medium resolution satellite imagery. The system is based around an open access toolbox that pre-processes and classifies Landsat-type imagery, and then allows users to interactively verify the classification. These data are then open for others to utilize through the online information system. We first explain imagery processing and data accessibility features, and then demonstrate the toolbox and the value of user verification using a case study on Nakuru National Park, Kenya. Monitoring and detection of disturbances can support implementation of effective protection, assist the work of park managers and conservation scientists, and thus contribute to conservation planning, priority assessment and potentially to meeting monitoring needs for Aichi target 11.