893 resultados para Moment features
Resumo:
This paper presents a writer identification scheme for Malayalam documents. As the accomplishment rate of a scheme is highly dependent on the features extracted from the documents, the process of feature selection and extraction is highly relevant. The paper describes a set of novel features exclusively for Malayalam language. The features were studied in detail which resulted in a comparative study of all the features. The features are fused to form the feature vector or knowledge vector. This knowledge vector is then used in all the phases of the writer identification scheme. The scheme has been tested on a test bed of 280 writers of which 50 writers having only one page, 215 writers with at least 2 pages and 15 writers with at least 4 pages. To perform a comparative evaluation of the scheme the test is conducted using WD-LBP method also. A recognition rate of around 95% was obtained for the proposed approach
Resumo:
The span of writer identification extends to broad domes like digital rights administration, forensic expert decisionmaking systems, and document analysis systems and so on. As the success rate of a writer identification scheme is highly dependent on the features extracted from the documents, the phase of feature extraction and therefore selection is highly significant for writer identification schemes. In this paper, the writer identification in Malayalam language is sought for by utilizing feature extraction technique such as Scale Invariant Features Transform (SIFT).The schemes are tested on a test bed of 280 writers and performance evaluated
Resumo:
This paper reports a novel region-based shape descriptor based on orthogonal Legendre moments. The preprocessing steps for invariance improvement of the proposed Improved Legendre Moment Descriptor (ILMD) are discussed. The performance of the ILMD is compared to the MPEG-7 approved region shape descriptor, angular radial transformation descriptor (ARTD), and the widely used Zernike moment descriptor (ZMD). Set B of the MPEG-7 CE-1 contour database and all the datasets of the MPEG-7 CE-2 region database were used for experimental validation. The average normalized modified retrieval rate (ANMRR) and precision- recall pair were employed for benchmarking the performance of the candidate descriptors. The ILMD has lower ANMRR values than ARTD for most of the datasets, and ARTD has a lower value compared to ZMD. This indicates that overall performance of the ILMD is better than that of ARTD and ZMD. This result is confirmed by the precision-recall test where ILMD was found to have better precision rates for most of the datasets tested. Besides retrieval accuracy, ILMD is more compact than ARTD and ZMD. The descriptor proposed is useful as a generic shape descriptor for content-based image retrieval (CBIR) applications
Resumo:
Low grade and High grade Gliomas are tumors that originate in the glial cells. The main challenge in brain tumor diagnosis is whether a tumor is benign or malignant, primary or metastatic and low or high grade. Based on the patient's MRI, a radiologist could not differentiate whether it is a low grade Glioma or a high grade Glioma. Because both of these are almost visually similar, autopsy confirms the diagnosis of low grade with high-grade and infiltrative features. In this paper, textural description of Grade I and grade III Glioma are extracted using First order statistics and Gray Level Co-occurance Matrix Method (GLCM). Textural features are extracted from 16X16 sub image of the segmented Region of Interest(ROI) .In the proposed method, first order statistical features such as contrast, Intensity , Entropy, Kurtosis and spectral energy and GLCM features extracted were showed promising results. The ranges of these first order statistics and GLCM based features extracted are highly discriminant between grade I and Grade III. In this study which gives statistical textural information of grade I and grade III Glioma which is very useful for further classification and analysis and thus assisting Radiologist in greater extent.
Resumo:
The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing
Resumo:
HINDI
Resumo:
The rejection of the European Constitution marks an important crystallization point for debate about the European Union (EU) and the integration process. The European Constitution was envisaged as the founding document of a renewed and enlarged European Union and thus it was rather assumed to find wide public support. Its rejection was not anticipated. The negative referenda in France and the Netherlands therefore led to a controversial debate about the more fundamental meaning and the consequences of the rejection both for the immediate state of affairs as well as for the further integration process. The rejection of the Constitution and the controversy about its correct interpretation therefore present an intriguing puzzle for political analysis. Although the treaty rejection was taken up widely in the field of European Studies, the focus of existing analyses has predominantly been on explaining why the current situation occurred. Underlying these approaches is the premise that by establishing the reasons for the rejection it is possible to derive the ‘true’ meaning of the event for the EU integration process. In my paper I rely on an alternative, discourse theoretical approach which aims to overcome the positivist perspective dominating the existing analyses. I argue that the meaning of the event ‘treaty rejection’ is not fixed or inherent to it but discursively constructed. The critical assessment of this concrete meaning-production is of high relevance as the specific meaning attributed to the treaty rejection effectively constrains the scope for supposedly ‘reasonable’ options for action, both in the concrete situation and in the further European integration process more generally. I will argue that the overall framing suggests a fundamental technocratic approach to governance from part of the Commission. Political struggle and public deliberation is no longer foreseen as the concrete solutions to the citizens’ general concerns are designed by supposedly apolitical experts. Through the communicative diffusion and the active implementation of this particular model of governance the Commission shapes the future integration process in a more substantial way than is obvious from its seemingly limited immediate problem-solving orientation of overcoming the ‘constitutional crisis’. As the European Commission is a central actor in the discourse production my analysis focuses on the specific interpretation of the situation put forward by the Commission. In order to work out the Commission’s particular take on the event I conducted a frame analysis (according to Benford/Snow) on a body of key sources produced in the context of coping with the treaty rejection.
Resumo:
Almost everyone sketches. People use sketches day in and day out in many different and heterogeneous fields, to share their thoughts and clarify ambiguous interpretations, for example. The media used to sketch varies from analog tools like flipcharts to digital tools like smartboards. Whereas analog tools are usually affected by insufficient editing capabilities like cut/copy/paste, digital tools greatly support these scenarios. Digital tools can be grouped into informal and formal tools. Informal tools can be understood as simple drawing environments, whereas formal tools offer sophisticated support to create, optimize and validate diagrams of a certain application domain. Most digital formal tools force users to stick to a concrete syntax and editing workflow, limiting the user’s creativity. For that reason, a lot of people first sketch their ideas using the flexibility of analog or digital informal tools. Subsequently, the sketch is "portrayed" in an appropriate digital formal tool. This work presents Scribble, a highly configurable and extensible sketching framework which allows to dynamically inject sketching features into existing graphical diagram editors, based on Eclipse GEF. This allows to combine the flexibility of informal tools with the power of formal tools without any effort. No additional code is required to augment a GEF editor with sophisticated sketching features. Scribble recognizes drawn elements as well as handwritten text and automatically generates the corresponding domain elements. A local training data library is created dynamically by incrementally learning shapes, drawn by the user. Training data can be shared with others using the WebScribble web application which has been created as part of this work.
Resumo:
The central challenge in face recognition lies in understanding the role different facial features play in our judgments of identity. Notable in this regard are the relative contributions of the internal (eyes, nose and mouth) and external (hair and jaw-line) features. Past studies that have investigated this issue have typically used high-resolution images or good-quality line drawings as facial stimuli. The results obtained are therefore most relevant for understanding the identification of faces at close range. However, given that real-world viewing conditions are rarely optimal, it is also important to know how image degradations, such as loss of resolution caused by large viewing distances, influence our ability to use internal and external features. Here, we report experiments designed to address this issue. Our data characterize how the relative contributions of internal and external features change as a function of image resolution. While we replicated results of previous studies that have shown internal features of familiar faces to be more useful for recognition than external features at high resolution, we found that the two feature sets reverse in importance as resolution decreases. These results suggest that the visual system uses a highly non-linear cue-fusion strategy in combining internal and external features along the dimension of image resolution and that the configural cues that relate the two feature sets play an important role in judgments of facial identity.
Resumo:
This paper argues that the Japanese business system cannot be adequately understood without extending the focus of analysis beyond the individual firm to the vertical keiretsu, or business group. The vertical group or keiretsu structure was first identified and studied in the auto and electronics industries, where it is most strongly marked, but it characterizes virtually all sectors, service industries as well as manufacturing. Large industrial vertical keiretsu are composed of subsidiaries engaged in three distinct types of activities (manufacturing, marketing, and quasirelated business). The coordination and control systems are built on the flows of products, financial resources, information and technology, and people across formal company boundaries, with the parent firm controlling the key flows. The paper examines the prevailing explanations first for the emergence and then for the persistence of the vertical group structure, and looks at the current pressures for change and adaptation in the system.
Resumo:
The statistical analysis of compositional data is commonly used in geological studies. As is well-known, compositions should be treated using logratios of parts, which are difficult to use correctly in standard statistical packages. In this paper we describe the new features of our freeware package, named CoDaPack, which implements most of the basic statistical methods suitable for compositional data. An example using real data is presented to illustrate the use of the package
Resumo:
The literature related to skew–normal distributions has grown rapidly in recent years but at the moment few applications concern the description of natural phenomena with this type of probability models, as well as the interpretation of their parameters. The skew–normal distributions family represents an extension of the normal family to which a parameter (λ) has been added to regulate the skewness. The development of this theoretical field has followed the general tendency in Statistics towards more flexible methods to represent features of the data, as adequately as possible, and to reduce unrealistic assumptions as the normality that underlies most methods of univariate and multivariate analysis. In this paper an investigation on the shape of the frequency distribution of the logratio ln(Cl−/Na+) whose components are related to waters composition for 26 wells, has been performed. Samples have been collected around the active center of Vulcano island (Aeolian archipelago, southern Italy) from 1977 up to now at time intervals of about six months. Data of the logratio have been tentatively modeled by evaluating the performance of the skew–normal model for each well. Values of the λ parameter have been compared by considering temperature and spatial position of the sampling points. Preliminary results indicate that changes in λ values can be related to the nature of environmental processes affecting the data
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Les travaux ici présentés se définissent explicitement comme des recherches sur des situations de formation d’enseignants non spécialistes aux problématiques des Enseignements Artistiques et Culturels1 [EAC]. Cela ne signifie pas que ces travaux relèvent de ce qui serait une «recherche appliquée»; bien au contraire, nous postulons que ces situations professionnelles renvoient à la recherche «fondamentale» en sciences des arts des questions originales et difficiles. Une des difficultés de la formation d’enseignants polyvalents est justement de leur apporter, dans des délais forcément réduits, des connaissances solides, alors qu’elles portent sur des champs disciplinaires multiples, et sur des noeuds théoriques qui se révèlent complexes