913 resultados para Model predictive control
Resumo:
Objective: To investigate factors that influence hospital readmissions of elderly patients and to construct a robust hospital readmissions predictive model.
Resumo:
This brief investigates a possible application of the inverse Preisach model in combination with the feedforward and feedback control strategies to control shape memory alloy actuators. In the feedforward control design, a fuzzy-based inverse Preisach model is used to compensate for the hysteresis nonlinearity effect. An extrema input history and a fuzzy inference is utilized to replace the inverse classical Preisach model. This work allows for a reduction in the number of experimental parameters and computation time for the inversion of the classical Preisach model. A proportional-integral-derivative (PID) controller is used as a feedback controller to regulate the error between the desired output and the system output. To demonstrate the effectiveness of the proposed controller, real-time control experiment results are presented.
Resumo:
Shape memory alloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics, and so on. Although the number of applications is increasing, there has been limited success in precise motion control owing to the hysteresis effect of these smart actuators. The present paper proposes an optimization of the proportional-integral-derivative (PID) control method for SMA actuators by using genetic algorithm and the Preisach hysteresis model.
Resumo:
Shapememoryalloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics and so on. Nonlinearity hysteresis effects existing in SMA actuators present a problem in the motion control of these smart actuators. This paper investigates the control problem of SMA actuators in both simulation and experiment. In the simulation, the numerical Preisachmodel with geometrical interpretation is used for hysteresis modeling of SMA actuators. This model is then incorporated in a closed loop PID control strategy. The optimal values of PID parameters are determined by using geneticalgorithm to minimize the mean squared error between desired output displacement and simulated output. However, the control performance is not good compared with the simulation results when these parameters are applied to the real SMA control since the system is disturbed by unknown factors and changes in the surrounding environment of the system. A further automated readjustment of the PID parameters using fuzzylogic is proposed for compensating the limitation. To demonstrate the effectiveness of the proposed controller, real time control experiment results are presented.
Resumo:
The aim of this paper is to increase the performance of hysteresis compensation for Shape Memory Alloy (SMA) actuators by using inverse Preisach model in closed — loop control system. This is used to reduce hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in closed-loop PID control system in order to obtain desired current-to-displacement relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.
Resumo:
Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.
Resumo:
The cerebral cortex contains circuitry for continuously computing properties of the environment and one's body, as well as relations among those properties. The success of complex perceptuomotor performances requires integrated, simultaneous use of such relational information. Ball catching is a good example as it involves reaching and grasping of visually pursued objects that move relative to the catcher. Although integrated neural control of catching has received sparse attention in the neuroscience literature, behavioral observations have led to the identification of control principles that may be embodied in the involved neural circuits. Here, we report a catching experiment that refines those principles via a novel manipulation. Visual field motion was used to perturb velocity information about balls traveling on various trajectories relative to a seated catcher, with various initial hand positions. The experiment produced evidence for a continuous, prospective catching strategy, in which hand movements are planned based on gaze-centered ball velocity and ball position information. Such a strategy was implemented in a new neural model, which suggests how position, velocity, and temporal information streams combine to shape catching movements. The model accurately reproduces the main and interaction effects found in the behavioral experiment and provides an interpretation of recently observed target motion-related activity in the motor cortex during interceptive reaching by monkeys. It functionally interprets a broad range of neurobiological and behavioral data, and thus contributes to a unified theory of the neural control of reaching to stationary and moving targets.
Resumo:
Two prospective controllers of hand movements in catching-both based on required velocity control-were simulated. Under certain conditions, this required velocity control led to overshoots of the future interception point. These overshoots were absent in pertinent experiments. To remedy this shortcoming, the required velocity model was reformulated in terms of a neural network, the Vector Integration To Endpoint model, to create a Required Velocity Integration To Endpoint model. Addition of a parallel relative velocity channel, resulting in the Relative and Required Velocity Integration To Endpoint model, provided a better account for the experimentally observed kinematics than the existing, purely behavioral models. Simulations of reaching to intercept decelerating and accelerating objects in the presence of background motion were performed to make distinct predictions for future experiments.