931 resultados para Model free kinetics
Resumo:
Arctic flaw polynyas are considered to be highly productive areas for the formation of sea-ice throughout the winter season. Most estimates of sea-ice production are based on the surface energy balance equation and use global reanalyses as atmospheric forcing, which are too coarse to take into account the impact of polynyas on the atmosphere. Additional errors in the estimates of polynya ice production may result from the methods of calculating atmospheric energy fluxes and the assumption of a thin-ice distribution within polynyas. The present study uses simulations using the mesoscale weather prediction model of the Consortium for Small-scale Modelling (COSMO), where polynya area is prescribed from satellite data. The polynya area is either assumed to be ice-free or to be covered with thin ice of 10 cm. Simulations have been performed for two winter periods (2007/08 and 2008/09). When using a realistic thin-ice thickness of 10 cm, sea-ice production in Laptev polynyas amount to 30 km3 and 73 km3 for the winters 2007/08 and 2008/09, respectively. The higher turbulent energy fluxes of open-water polynyas result in a 50-70% increase in sea-ice production (49 km3 in 2007/08 and 123 km3 in 2008/09). Our results suggest that previous studies have overestimated ice production in the Laptev Sea.
Resumo:
The impact of extreme sea ice initial conditions on modelled climate is analysed for a fully coupled atmosphere ocean sea ice general circulation model, the Hadley Centre climate model HadCM3. A control run is chosen as reference experiment with greenhouse gas concentration fixed at preindustrial conditions. Sensitivity experiments show an almost complete recovery from total removal or strong increase of sea ice after four years. Thus, uncertainties in initial sea ice conditions seem to be unimportant for climate modelling on decadal or longer time scales. When the initial conditions of the ocean mixed layer were adjusted to ice-free conditions, a few substantial differences remained for more than 15 model years. But these differences are clearly smaller than the uncertainty of the HadCM3 run and all the other 19 IPCC fourth assessment report climate model preindustrial runs. It is an important task to improve climate models in simulating the past sea ice variability to enable them to make reliable projections for the 21st century.
Resumo:
Temperature, pressure, gas stoichiometry, and residence time were varied to control the yield and product distribution of the palladium-catalyzed aminocarbonylation of aromatic bromides in both a silicon microreactor and a packed-bed tubular reactor. Automation of the system set points and product sampling enabled facile and repeatable reaction analysis with minimal operator supervision. It was observed that the reaction was divided into two temperature regimes. An automated system was used to screen steady-state conditions for offline analysis by gas chromatography to fit a reaction rate model. Additionally, a transient temperature ramp method utilizing online infrared analysis was used, leading to more rapid determination of the reaction activation energy of the lower temperature regimes. The entire reaction spanning both regimes was modeled in good agreement with the experimental data.
Resumo:
Gastrointestinal (GI) models that mimic physiological conditions in vitro are important tools for developing and optimizing biopharmaceutical formulations. Oral administration of live attenuated bacterial vaccines (LBV) can safely and effectively promote mucosal immunity but new formulations are required that provide controlled release of optimal numbers of viable bacterial cells, which must survive gastrointestinal transit overcoming various antimicrobial barriers. Here, we use a gastro-small intestine gut model of human GI conditions to study the survival and release kinetics of two oral LBV formulations: the licensed typhoid fever vaccine Vivotif comprising enteric coated capsules; and an experimental formulation of the model vaccine Salmonella Typhimurium SL3261 dried directly onto cast enteric polymer films and laminated to form a polymer film laminate (PFL). Neither formulation released significant numbers of viable cells when tested in the complete gastro-small intestine model. The poor performance in delivering viable cells could be attributed to a combination of acid and bile toxicity plus incomplete release of cells for Vivotif capsules, and to bile toxicity alone for PFL. To achieve effective protection from intestinal bile in addition to effective acid resistance, bile adsorbent resins were incorporated into the PFL to produce a new formulation, termed BR-PFL. Efficient and complete release of 4.4x107 live cells per dose was achieved from BR-PFL at distal intestinal pH, with release kinetics controlled by the composition of the enteric polymer film, and no loss in viability observed in any stage of the GI model. Use of this in vitro GI model thereby allowed rational design of an oral LBV formulation to maximize viable cell release.
Resumo:
The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. We also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.
Resumo:
Soybean oil can be deacidified by liquid-liquid extraction with ethanol. In the present paper, the liquid-liquid equilibria of systems composed of refined soybean oil, commercial linoleic acid, ethanol and water were investigated at 298.2 K. The experimental data set obtained from the present study (at 298.2 K) and the results of Mohsen-Nia et al. [1] (at 303.2 K) and Rodrigues et al. [2] (at 323.2 K) were correlated by applying the non-random two liquid (NRTL) model. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. Among variables, the water content of the solvent had the strongest effect on the solubility of the components. The maximum deviation and average variance between the experimental and calculated compositions were 1.60% and 0.89%, indicating that the model could accurately predict the behavior of the compounds at different temperatures and degrees of hydration. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present paper reports phase equilibrium experimental data for two systems composed by peanut oil or avocado seed oil + commercial oleic acid + ethanol + water at 298.2 K and different water contents in the solvent. The addition of water to the solvent reduces the loss of neutral oil in the alcoholic phase and improves the solvent selectivity. The experimental data were correlated by the NRTL and UNIQUAC models. The global deviations between calculated and experimental values were 0.63 % and 1.08 %, respectively, for the systems containing avocado seed oil. In the case of systems containing peanut oil those deviations were 0.65 % and 0.98 %, respectively. Such results indicate that both models were able to reproduce correctly the experimental data, although the NRTL model presented a better performance.
Resumo:
A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this scenario the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the Lambda CDM model. For a spatially flat Universe, as predicted by inflation (Omega(dm) + Omega(baryon) = 1), it is found that the effectively observed matter density parameter is Omega(meff) = 1 - alpha, where alpha is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires alpha similar to 0.71 so that Omega(meff) similar to 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.
Resumo:
Objective: In previous studies cholesterol-rich nanoemulsions (LDE) resembling low-density lipoprotein were shown to concentrate in atherosclerotic lesions of rabbits. Lesions were pronouncedly reduced by treatment with paclitaxel associated with LDE. This study aimed to test the hypothesis of whether LDE-paclitaxel is able to concentrate in grafted hearts of rabbits and to ameliorate coronary allograft vasculopathy after the transplantation procedure. Methods: Twenty-one New Zealand rabbits fed 0.5% cholesterol were submitted to heterotopic heart transplantation at the cervical position. All rabbits undergoing transplantation were treated with cyclosporin A (10 mg . kg(-1) . d(-1) by mouth). Eleven rabbits were treated with LDE-paclitaxel (4 mg/kg body weight paclitaxel per week administered intravenously for 6 weeks), and 10 control rabbits were treated with 3 mL/wk intravenous saline. Four control animals were injected with LDE labeled with [(14)C]-cholesteryl oleate ether to determine tissue uptake. Results: Radioactive LDE uptake by grafts was 4-fold that of native hearts. In both groups the coronary arteries of native hearts showed no stenosis, but treatment with LDE-paclitaxel reduced the degree of stenosis in grafted hearts by 50%. The arterial luminal area in grafts of the treated group was 3-fold larger than in control animals. LDE-paclitaxel treatment resulted in a 7-fold reduction of macrophage infiltration. In grafted hearts LDE-paclitaxel treatment reduced the width of the intimal layer and inhibited the destruction of the medial layer. No toxicity was observed in rabbits receiving LDE-paclitaxel treatment. Conclusions: LDE-paclitaxel improved posttransplantation injury to the grafted heart. The novel therapeutic approach for heart transplantation management validated here is thus a promising strategy to be explored in future clinical studies. (J Thorac Cardiovasc Surg 2011;141:1522-8)
Resumo:
A 2D steady model for the annular two-phase flow of water and steam in the steam-generating boiler pipes of a liquid metal fast breeder reactor is proposed The model is based on thin-layer lubrication theory and thin aerofoil theory. The exchange of mass between the vapour core and the liquid film due to evaporation of the liquid film is accounted for using some simple thermodynamics models, and the resultant change of phase is modelled by proposing a suitable Stefan problem Appropriate boundary conditions for the now are discussed The resulting non-lineal singular integro-differential equation for the shape of the liquid film free surface is solved both asymptotically and numerically (using some regularization techniques) Predictions for the length to the dryout point from the entry of the annular regime are made The influence of both the traction tau provided by the fast-flowing vapour core on the liquid layer and the mass transfer parameter eta on the dryout length is investigated
Resumo:
fit the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten. this paper presents an extension of it previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier-Stokes equations. Second, it reports numerical simulation results for 1D hock tube problem, 2D impinging jet and 2D/3D broken clam flows. Furthermore, these results are compared with existing analytical and experimental data. And third, it presents the application of the numerical method for solving 3D free surface flow problems. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved,
Resumo:
This work deals with the development of a numerical technique for simulating three-dimensional viscoelastic free surface flows using the PTT (Phan-Thien-Tanner) nonlinear constitutive equation. In particular, we are interested in flows possessing moving free surfaces. The equations describing the numerical technique are solved by the finite difference method on a staggered grid. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are considered. The PTT equation is solved by a high order method, which requires the calculation of the extra-stress tensor on the mesh contours. To validate the numerical technique developed in this work flow predictions for fully developed pipe flow are compared with an analytic solution from the literature. Then, results of complex free surface flows using the FIT equation such as the transient extrudate swell problem and a jet flowing onto a rigid plate are presented. An investigation of the effects of the parameters epsilon and xi on the extrudate swell and jet buckling problems is reported. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to assess the relation between the number of free radicals generated and the polymerization depth in two different commercial brands of resin composites with different colors and translucence. Electron paramagnetic resonance quantified the radical populations through relative intensity (I (r)) of free radicals generated, and radical decay was monitored. Sample translucence and the classical polymerization depth were measured. The analysis indicated that resin with more color pigments (MA4, I (r) = 0.73 a.u) or more opacity components (ODA2, I (r) = 0.84 a.u) generated smaller populations of free radicals and have the lower polymerization depth than clearer (M, I (r) = 1.20 a.u and MA2, I (r) = 1.02) or more translucent (OEA2, I (r) = 1.00 a.u) composites for the same light-curing time. It seems that irradiation doses have to be adequate to more colored and less translucent resins.
Resumo:
We propose an alternative formulation of the Standard Model which reduces the number of free parameters. In our framework, fermionic fields are assigned to fundamental representations of the Lorentz and the internal symmetry groups, whereas bosonic field variables transform as direct products of fundamental representations of all symmetry groups. This allows us to reduce the number of fundamental symmetries. We formulate the Standard Model by considering the SU(3) and SU(2) symmetry groups as the underlying symmetries of the fundamental interactions. This allows us to suggest a model, for the description of the interactions of the intermediate bosons among themselves and interactions of fermions, that makes use of just two parameters. One parameter characterizes the symmetric phase, whereas the other parameter (the asymmetry parameter) gives the breakdown strength of the symmetries. All coupling strengths of the Standard Model are then derived in terms of these two parameters. In particular, we show that all fermionic electric charges result from symmetry breakdown.
Resumo:
A previously proposed model describing the trapping site of the interstitial atomic hydrogen in borate glasses is analyzed. In this model the atomic hydrogen is stabilized at the centers of oxygen polygons belonging to B-O ring structures in the glass network by van der Waals forces. The previously reported atomic hydrogen isothermal decay experimental data are discussed in the light of this microscopic model. A coupled differential equation system of the observed decay kinetics was solved numerically using the Runge Kutta method. The experimental untrapping activation energy of 0.7 x 10(-19) J is in good agreement with the calculated results of dispersion interaction between the stabilized atomic hydrogen and the neighboring oxygen atoms at the vertices of hexagonal ring structures. (C) 2009 Elsevier B.V. All rights reserved.