536 resultados para Mites.
Resumo:
"Annex number 189. Report relating to the construction of the hypsometric map of the republic of Guatemala drawn under the supervision of the engineering staff of the Guatemala boundary commission, by order of the government of the republic": p. 178-183. Signed: Guatemala, September 29, 1928. Claudio Urrutia.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Reprinted from: American Veterinary Review, 1898, v. 22, p. 3-25.
Resumo:
CONTENTS.--vol. I, no. 1. Notes on Indian insect pests. 1889. no. 2. Notes on Indian economic entomology. 1889. no. 3. Silkworms in India. 1890. no. 4. Notes on Indian economic entomology. 1890.--vol. II, no. 1. Economic entomology. 1891. no. 2. The wild silk insects of India. 1891. no. 3. On white insect wax in India. 1891. no. 4. The locusts of Bengal, Madras, Assam, and Bombay. 1891. no. 5. [Economic entomology, etc.] 1891. no. 6. A conspectus of the insects which affect crops in India. 1893.--vol. III, no. 1-3. [Notes on Indian insect pests, etc.] 1893-94. no. 4. An account of the insects and mites which attack the tea plant in India. 1895. no. 5-6. [Entomological notes] 1894-96.--vol. IV-vol. VI, no. 1. [Notes on Indian insect pests] 1896-1903.
Resumo:
Mode of access: Internet.
Resumo:
1st edition, Buenos Aires, 1836-37.
Resumo:
--VI. Insects, pt. II. Hymenoptera continued (Tubilifera and Aculeata), Coleoptera, Strepsiptera, Lepidotera, Diptera, Aphaniptera, Thysanoptera, Hemiptera, Anoplura. By David Sharp. 1901.--VII. Hemichordata, by S.F. Harmer. Ascidians and Amphioxus, by W.A. Herdman. Fishes (exclusive of th systematic account of Teleostei) by T.W. Bridge. Fishes (systematic account of Teleostei) by G.A. Bonlenger. 1904.--VIII. Amphibia and reptiles, by Hans Gadow. 1901.--IX. Birds, by A.H. Evans. 1900--X. Mammalia, by F.E. Beddard. 1902.
Resumo:
Mode of access: Internet.
Resumo:
The biology and phenology of the eriophyid mite, Floracarus perrepae Knihinicki and Boczek,a potential biological control agent of Lygodium microphyllum (Cav.) R. Br., was studied in its native range - Queensland, Australia. F. perrepae forms leaf roll galls oil tile subpinnae of L. microphyllum. It has a simple biology, with females and males produced throughout the year. Tile Population was female biased at 10.5 to 1. The immature development time was 8.9 ± 0.1 and 7.0 ± 0.1 days; adult longevity was 30.6 ± 1.6 and 19.4 ± 1.2 days and mean fecundity per female was 54.5 ± 3.2 and 38.5 ± 1.6 eggs at 21 and 26 ° C, all respectively. Field studies showed that tile mite was active year round, with populations peaking when temperatures were cool and soil moisture levels were highest. Two species of predatory mites, Tarsonemus sp. and a species of Tydeidae, along with the pathogen Hirsutella thompsonii, had significant effects oil all life stages of F. perrepae. Despite high levels of predators and the pathogen, F. perrepae caused consistent damage to L. microphyllum at all the field sites over the entire 2 years of the study.
Resumo:
To better understand the evolution of mitochondrial (mt) genomes in the Acari (mites and ticks), we sequenced the mt genome of the chigger mite, Leptotrombidium pallidum (Arthropoda: Acari: Acariformes). This genome is highly rearranged relative to that of the hypothetical ancestor of the arthropods and the other species of Acari studied. The mt genome of L. pallidum has two genes for large subunit rRNA, a pseudogene for small subunit rRNA, and four nearly identical large noncoding regions. Nineteen of the 22 tRNAs encoded by this genome apparently lack either a T-arm or a D-arm. Further, the mt genome of L. pallidum has two distantly separated sections with identical sequences but opposite orientations of transcription. This arrangement cannot be accounted for by homologous recombination or by previously known mechanisms of mt gene rearrangement. The most plausible explanation for the origin of this arrangement is illegitimate inter-mtDNA recombination, which has not been reported previously in animals. In light of the evidence from previous experiments on recombination in nuclear and mt genomes of animals, we propose a model of illegitimate inter-mtDNA recombination to account for the novel gene content and gene arrangement in the mt genome of L. pallidum.
Resumo:
We inferred phylogeny among the three major lineages of the Acari ( mites) from the small subunit rRNA gene. Our phylogeny indicates that the Opilioacariformes is the sister-group to the Ixodida+Holothyrida, not the Ixodida+Mesostigmata+Holothyrida, as previously thought. Support for this relationship increased when sites with the highest rates of nucleotide substitution, and thus the greatest potential for saturation with nucleotide substitutions, were removed. Indeed, the increase in support ( and resolution) was despite a 70% reduction in the number of parsimony-informative sites from 408 to 115. This shows that rather than 'noisy' sites having no impact on resolution of deep branches, 'noisy' sites have the potential to obscure phylogenetic relationships. The arrangement, Ixodida+Holothyrida+Opilioacariformes, however, may be an artefact of long-branch attraction since relative-rate tests showed that the Mesostigmata have significantly faster rates of nucleotide substitution than other parasitiform mites. Thus, the fast rates of nucleotide substitution of the Mesostigmata might have caused the Mesostigmata to be attracted to the outgroup in our trees. We tested the hypothesis that the high rate of nucleotide substitution in some mites was related to their short generation times. The Acari species that have high nucleotide substitution rates usually have short generation times; these mites also tend to be more active and thus have higher metabolic rates than other mites. Therefore, more than one factor may affect the rate of nucleotide substitution in these mites.
Resumo:
Dr Ronald Vernon Southcott (1918–1998) was amongst the greatest of the Australian doctor-naturalists. His toxinological contributions included the description and naming of the box-jellyfish, Chironex fleckeri, the first definitive study (1950–1957) of the toxinology, taxonomy and biology of Australian scorpions; and the first observations in Australia of the introduced fiddleback spider, Loxosceles. His research into the medical effects of toxic fungi, poisonous plants and Australian insects was extensive. He was a founding member of the International Society on Toxinology and served on the Toxicon Editorial Board for more than 30 years. He also made extensive contributions to acarology, and to the taxonomy of mites, specifically the sub-families and genera of the Erythraeoidea. This prodigious output was achieved by one who, with the exception of war service (1942–1946), almost never travelled outside South Australia, was almost entirely self-funded and worked from his home laboratory. With Dr. P.D. Scott and C.J. Glover, he was also the authority on the fish of South Australia. Dr. Southcott was also a medical epidemiologist and senior medical administrator (1949–1978) with the Australian Commonwealth Department of Veterans’ Affairs. He served for 30 years as an Honorary Consultant in Toxicology to the Adelaide Children's Hospital. As a zoologist and botanist of astounding breadth, he worked indefatigably in a voluntary capacity for the South Australian Museum, of which he was Museum Board Chairman from 1974 to 1982. In the pantheon of the great doctor-naturalists who have worked in Australia, he stands with Robert Brown and Thomas Lane Bancroft.
Resumo:
Seven species of eriophyoid mites (Acari: Eriophyoidea) are known to attack sugarcane plants (Saccharum spp., Poaceae) and related grasses in various parts of the world, but except for unconfirmed reports of Aceria sacchari and Abacarus sacchari, Australia had been thought to be free of these pests. Herein, Abacarus queenslandiensis n. sp. (Eriophyidae), vagrant on leaf surfaces of sugarcane in Australia, is described. Also, Cathetacarus n. gen. is erected for the distinctive mite, Catarhinus spontaneae Mohanasundaram, 1984. In addition, a key to the eriophyoid mites known to occur on sugarcane plants in the world is given.