952 resultados para Miniature painting
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Satin bowerbirds Ptilonorhynchus violaceus have an elaborate multi-component sexual display, some components of which have been extensively studied. We describe a relatively unstudied component of this display, bower painting, and birds' responses to manipulations of their paint. Males of this species focus their display around a stick bower constructed on the forest floor which they decorate with a variety of objects and paint. Painting involves a male masticating plant material and wiping the plant-saliva mixture onto the inside walls of the bower; during courtship visits to bowers, females nibble at this paint. We found that 93% of 53 males painted their bowers at our study site and the time males spent painting their bowers accounted for 24% of their time at the bower. We experimentally removed and added paint to bowers to test whether males respond to these changes in their paint. Males gave more advertisement calls and spent less time manipulating sticks at the bower when we added fresh wet paint to their bowers compared to older dried paint or a control treatment. They did not respond to the removal of paint from their bowers, perhaps because it was primarily older dried paint that was removed. We also found that males painted more frequently when there was measurable wind in their bowers, which could have degraded the quality of the signal. Our findings indicate that fresh wet paint is more important to males than older dried paint and, together with previous work at this site, suggest that paint may act as a signal to females. Given that females nibble bower sticks during courtship, we suggest that bower paint may function as a chemical sexual signal rather than a visual signal.
Resumo:
This chapter undertakes the first examination of the role the fine arts play in Thomas Bernhard’s prose works. Though not as prominent as the role of music, painting and the fine arts play a crucial role in Frost and Alte Meister; these two novels coincidentally also happen to be the first and last novels written by Bernhard. This chapter takes its cue from the positive role awarded to Francis Bacon in the novel Das Kalkwerk. Comparing and contrasting the relation and influence between the art of Bacon and the literature of Bernhard, I am able to demonstrate a number of surprising analogies. Following a brief biographical synopsis, I focus on four aesthetic operations that are crucial to both artists. Using the key terms of ‘middle way’, ‘variation’, ‘vibration’ and ‘mediation’, I am able to uncover surprising similarities between the novels and the paintings. These hidden connections are further confirmed by looking at the two artists’ shared major motifs, namely the slaughterhouse, the scream, the relation between animals and humans, and pain. This bleak outlook on the state of human civilisation that these two major artists of the end of the 20th century share, embodies both a warning and a prophesy for the 21st century.
Resumo:
The mechanisms involved in the production of chromate-phosphate conversion coatings on aluminium have been investigated. A sequence of coating nucleation and growth has been outlined and the principle roles of the constituent ingredients of the chromate-phosphate solution have been shown. The effect of dissolved aluminium has been studied and its role in producing sound conversion coatings has been shown. Metallic contamination has been found to have a dramatic influence on chromate-phosphate coatings when particular levels have been exceeded. Coating formation was seen to be affected in proportion to the level of contaminaton; no evidence of sudden failure was noted. The influence of substrate and the effect of an acidic cleaner prior to conversion coating have been studied and explained. It was found that the cleaner ages rapidly and that this must .be allowed for when attempting to reproduce industrial conditions in the laboratory. A study was carried out on the flowing characteristics of polyester powders of various size distributions as they melt using the hot-stage microscopy techniques developed at Aston. It was found that the condition of the substrate (ie extent of pretreatment), had a significant effect on particle flow. This was explained by considering the topography of the substrate surface. A number of 'low-bake' polyester powders were developed and tested for mechanical, physical and chemical resistance. The best formulation had overall properties which were as good as the standard polyester in many respects. However chemical resistance was found to be slightly lower. The charging characteristics of powder paints during application by means of electrostatic spraying was studied by measuring the charge per unit mass and relating this to the surface area. A high degree of correlation was found between charge carried and surface area, and the charge retained was related to the powder's formulation.
Resumo:
A miniature slow light delay line with the record large delay time, small transmission loss, dispersion, and effective speed of light is proposed and demonstrated using the SNAP (Surface Nanoscale Axial Photonics) technology. © 2014 OSA.
Resumo:
In this paper we study some of the characteristics of the art painting image color semantics. We analyze the color features of differ- ent artists and art movements. The analysis includes exploration of hue, saturation and luminance. We also use quartile’s analysis to obtain the dis- tribution of the dispersion of defined groups of paintings and measure the degree of purity for these groups. A special software system “Art Paint- ing Image Color Semantics” (APICSS) for image analysis and retrieval was created. The obtained result can be used for automatic classification of art paintings in image retrieval systems, where the indexing is based on color characteristics.
Resumo:
For the Chinese, fine art is one of the most important items in human life. The goals of fine arts education enhance the student so that s/he can make reasonable judgments about work, gain knowledge of color and understand the process of designing environmental layouts. Related technique and creativity training are offered students in accordance with individual differences and social expectations.^ Traditionally, Taiwan's junior high school fine art program teaches mainly painting technique. The Ministry of Education in Taiwan determines the curriculum of junior high school fine art education. The purpose of this study was to determine the effects of teaching Chinese painting appreciation on the artistic achievements of junior high school students in Taiwan. The subjects were seventh grade students who had never learned Chinese painting before. Two classes were randomly chosen from each target school and were designated as the experimental or control group. Instruction in all groups was delivered by the researcher himself. At the end of the study, data about subjects' related knowledge, creative technique, and feeling toward Chinese painting were systematically collected and analyzed.^ The result of the study was that students in the experimental group were more motivated to learn Chinese painting than were the students in the control group. Students in the experimental group made better progress in the development of creative skill, had better critical ability, and demonstrated better performance in Chinese painting form, set up, stroke and color of related knowledge than did students in the control group. It was therefore concluded that Chinese painting appreciation education can promote better artistic achievement and that this approach should be used in other areas of art education. ^
Resumo:
Aerospace turboengines present a demanding challenge to many heat transfer scientists and engineers. Designers in this field are seeking the best design to transform the chemical energy of the fuel into the useful work of propulsive thrust at maximum efficiency. To this aim, aerospace turboengines must operate at very high temperatures and pressures with very little heat losses. These requirements are often in conflict with the ability to protect the turboengine blades from this hostile thermal environment. Heat pipe technology provides a potential cooling means for the structure exposed to high heat fluxes. Therefore, the objective of this dissertation is to develop a new radially rotating miniature heat pipe, which would combine the traditional air-cooling technology with the heat pipe for more effective turboengine blade cooling. ^ In this dissertation, radially rotating miniature heat pipes are analyzed and studied by employing appropriate flow and heat transfer modeling as well as experimental tests. The analytical solutions for the flows of condensate film and vapor, film thickness, and vapor temperature distribution along the heat pipe length are derived. The diffuse effects of non-condensable gases on the temperature distribution along the heat pipe length are also studied, and the analytical solutions for the temperature distributions with the diffuse effects of non-condensable gases are obtained. Extensive experimental tests on radially rotating miniature heat pipes with different influential parameters are undertaken, and various effects of these parameters on the operation of the heat pipe performance are researched. These analytical solutions are in good agreement with the experimental data. ^ The theoretical and experimental studies have proven that the radially rotating miniature heat pipe has a very large heat transfer capability and a very high effective thermal conductance that is 60–100 times higher than the thermal conductivity of copper. At the same time, the heat pipe has a simple structure and low manufacturing cost, and can withstand strong vibrations and work in a high-temperature environment. Therefore, the combination of the traditional air-cooling technology with the radially rotating miniature heat pipe is a feasible and effective cooling means for high-temperature turbine blades. ^
Resumo:
Creation of miniature optical delay lines and buffers is one of the greatest challenges of the modern photonics which can revolutionize optical communications and computing. Several remarkable designs of slow light optical delay lines employing coupled ring resonators and photonic crystal waveguides has been suggested and experimentally demonstrated. However, the insertion loss of these devices is too large for their practical applications. Alternatively, the recently developed photonic fabrication platform, Surface Nanoscale Axial Photonics (SNAP) allows us to fabricate record small delay lines with unprecedentedly small dispersion and low loss. In this report, we review the recent progress in fabrication and design of miniature slow light devices and buffers, in particular, those based on the SNAP technology.
Resumo:
Miniature planar waveguide and fiber-based delay lines and buffers including slow light resonant structures and devices are reviewed.