998 resultados para Military simulation
Resumo:
A set of models in Aspen plus was built to simulate the direct synthesis process of hydrogen peroxide in a micro-reactor system. This process model can be used to carry out material balance calculation under various experimental conditions. Three thermodynamic property methods were compared by calculating gas solubility and Uniquac-RK method was finally selected for process model. Two different operation modes with corresponding operation conditions were proposed as the starting point of future experiments. Simulations for these two modes were carried out to get the information of material streams. Moreover, some hydrodynamic parameters such as gas/liquid superficial velocity, gas holdup were also calculated with improved process model. These parameters proved the proposed experimental conditions reasonable to some extent. The influence of operation conditions including temperature, pressure and circulation ratio was analyzed for the first operation mode, where pure oxygen was fed into dissolving tank and hydrogen-carbon dioxide mixture was fed into microreactor directly. The preferred operation conditions for the system are low temperature (2°C) and high pressure (30 bar) in dissolving tank. High circulation ratio might be good in the sense that more oxygen could be dissolved and fed into reactor for reactions, but meanwhile hydrodynamics of microreactor should be considered. Furthermore, more operation conditions of reactor gas/liquid feeds in both of two operation modes were proposed to provide guidance for future experiment design and corresponding hydrodynamic parameters were also calculated. Finally, safety issue was considered from thermodynamic point of view and there is no explosion danger at given experimental plan since the released reaction heat will not cause solvent vaporization inside the microchannels. The improvement of process model still needs further study based on the future experimental results.
Resumo:
The control of coating layer properties is becoming increasingly important as a result of an emerging demand for novel coated paper-based products and an increasing popularity of new coating application methods. The governing mechanisms of microstructure formation dynamics during consolidation and drying are nevertheless, still poorly understood. Some of the difficulties encountered by experimental methods can be overcome by the utilisation of numerical modelling and simulation-based studies of the consolidation process. The objective of this study was to improve the fundamental understanding of pigment coating consolidation and structure formation mechanisms taking place on the microscopic level. Furthermore, it is aimed to relate the impact of process and suspension properties to the microstructure of the coating layer. A mathematical model based on a modified Stokesian dynamics particle simulation technique was developed and applied in several studies of consolidation-related phenomena. The model includes particle-particle and particle-boundary hydrodynamics, colloidal interactions, Born repulsion, and a steric repulsion model. The Brownian motion and a free surface model were incorporated to enable the specific investigation of consolidation and drying. Filter cake stability was simulated in various particle systems, and subjected to a range of base substrate absorption rates and system temperatures. The stability of the filter cake was primarily affected by the absorption rate and size of particles. Temperature was also shown to have an influence. The consolidation of polydisperse systems, with varying wet coating thicknesses, was studied using imposed pilot trial and model-based drying conditions. The results show that drying methods have a clear influence on the microstructure development, on small particle distributions in the coating layer and also on the mobility of particles during consolidation. It is concluded that colloidal properties can significantly impact coating layer shrinkage as well as the internal solids concentration profile. Visualisations of particle system development in time and comparison of systems at different conditions are useful in illustrating coating layer structure formation mechanisms. The results aid in understanding the underlying mechanisms of pigment coating layer consolidation. Guidance is given regarding the relationship between coating process conditions and internal coating slurry properties and their effects on the microstructure of the coating.
Resumo:
The objective of the thesis was to create three tutorials for MeVEA Simulation Software to instruct the new users to the modeling methodology used in the MeVEA Simulation Software. MeVEA Simulation Software is a real-time simulation software based on multibody dynamics. The simulation software is designed to create simulation models of complete mechatronical system. The thesis begins with a more detail description of the MeVEA Simulation Software and its components. The thesis presents the three simulation models and written theory of the steps of model creation. The first tutorial introduces the basic features which are used in most simulation models. The basic features include bodies, constrains, forces, basic hydraulics and motors. The second tutorial introduces the power transmission components, tyres and user input definitions for the different components in power transmission systems. The third tutorial introduces the definitions of two different types of collisions and collision graphics used in MeVEA Simulation Software.
Resumo:
BACKGROUND: Simulation techniques are spreading rapidly in medicine. Suc h resources are increasingly concentrated in Simulation Laboratories. The MSRP-USP is structuring such a laboratory and is interested in the prevalence of individual initiatives that could be centralized there. The MSRP-USP currently has five full-curriculum courses in the health sciences: Medicine, Speech Therapy, Physical Therapy, Nutrition, and Occupational Therapy, all consisting of core disciplines. GOAL: To determine the prevalence of simulation techniques in the regular courses at MSRP-USP. METHODS: Coordinators of disciplines in the various courses were interviewed using a specifically designed semi-structured questionnaire, and all the collected data were stored in a dedicated database. The disciplines were grouped according to whether they used (GI) or did not use (GII) simulation resources. RESULTS AND DISCUSSION: 256 disciplines were analyzed, of which only 18.3% used simulation techniques, varying according to course: Medicine (24.7.3%), Occupational Therapy (23.0%), Nutrition (15.9%), Physical Therapy (9.8%), and Speech Therapy (9.1%). Computer simulation programs predominated (42.5%) in all five courses. The resources were provided mainly by MSRP-USP (56.3%), with additional funding coming from other sources based on individual initiatives. The same pattern was observed for maintenance. There was great interest in centralizing the resources in the new Simulation Laboratory in order to facilitate maintenance, but there was concern about training and access to the material. CONCLUSIONS: 1) The MSRP-USP simulation resources show low complexity and are mainly limited to computer programs; 2) Use of simulation varies according to course, and is most prevalent in Medicine; 3) Resources are scattered across several locations, and their acquisition and maintenance depend on individual initiatives rather than central coordination or curricular guidelines
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
Solar radiation is an important factor for plant growth, being its availability to understory crops strongly modified by trees in an Agroforestry System (AFS). Coffee trees (Coffea arabica - cv. Obatã IAC 1669-20) were planted at a 3.4 x 0.9 m spacing inside and aside rows of monocrops of 12 year-old rubber trees (Hevea spp.), in Piracicaba-SP, Brazil (22º42'30" S, 47º38'00" W - altitude: 546m). One-year-old coffee plants exposed to 25; 30; 35; 40; 45; 80; 90; 95 and 100% of the total solar radiation were evaluated according to its biophysical parameters of solar radiation interception and capture. The Goudriaan (1977) adapted by Bernardes et al. (1998) model for radiation attenuation fit well to the measured data. Coffee plants tolerate a decrease in solar radiation availability to 50% without undergoing a reduction on growth and LAI, which was approximately 2m².m-2 under this condition. Further reductions on the availability of solar radiation caused a reduction in LAI (1.5m².m-2), thus poor land cover and solar radiation interception, resulting in growth reduction.
Resumo:
Traditionally simulators have been used extensively in robotics to develop robotic systems without the need to build expensive hardware. However, simulators can be also be used as a “memory”for a robot. This allows the robot to try out actions in simulation before executing them for real. The key obstacle to this approach is an uncertainty of knowledge about the environment. The goal of the Master’s Thesis work was to develop a method, which allows updating the simulation model based on actual measurements to achieve a success of the planned task. OpenRAVE was chosen as an experimental simulation environment on planning,trial and update stages. Steepest Descent algorithm in conjunction with Golden Section search procedure form the principle part of optimization process. During experiments, the properties of the proposed method, such as sensitivity to different parameters, including gradient and error function, were examined. The limitations of the approach were established, based on analyzing the regions of convergence.
Resumo:
ABSTRACT This study aimed to verify the differences in radiation intensity as a function of distinct relief exposure surfaces and to quantify these effects on the leaf area index (LAI) and other variables expressing eucalyptus forest productivity for simulations in a process-based growth model. The study was carried out at two contrasting edaphoclimatic locations in the Rio Doce basin in Minas Gerais, Brazil. Two stands with 32-year-old plantations were used, allocating fixed plots in locations with northern and southern exposure surfaces. The meteorological data were obtained from two automated weather stations located near the study sites. Solar radiation was corrected for terrain inclination and exposure surfaces, as it is measured based on the plane, perpendicularly to the vertical location. The LAI values collected in the field were used. For the comparative simulations in productivity variation, the mechanistic 3PG model was used, considering the relief exposure surfaces. It was verified that during most of the year, the southern surfaces showed lower availability of incident solar radiation, resulting in up to 66% losses, compared to the same surface considered plane, probably related to its geographical location and higher declivity. Higher values were obtained for the plantings located on the northern surface for the variables LAI, volume and mean annual wood increase, with this tendency being repeated in the 3PG model simulations.
Resumo:
The most outstanding conceptual challenge of modern crisis management is the principle of consent. It is not a problem only at the operational level - it challenges the entire decision-making structures of crisis management operations. In post-cold war times and especially in the 21st century, there has been a transition from peacekeeping with limited size and scope towards large and complex peace operations. This shift has presented peace operations with a dilemma. How to balance between maintaining consent for peace operations, whilst being able to use military force to coerce those attempting to wreck peace processes? To address such a dilemma, this research aims to promote understanding, on what can be achieved by military crisis management operations (peace support operations) in the next decade. The research concentrates on the focal research question: Should military components induce consent or rely on the compliance of conflicting parties in crisis management operations of the next decade (2020 – 2030)? The focus is on military – political strategic level considerations, and especially on the time before political decisions to commit to a crisis management operation. This study does not focus on which actor or organisation should intervene. The framework of this thesis derives from the so called ‘peacebuilding space’, the scope of peace operations and spoiler theory. Feasibility of both peace enforcement and peacekeeping in countering future risk conditions are analysed in this framework. This future-orientated qualitative research uses the Delphi-method with a panel of national and international experts. Citation analysis supports identification of relevant reference material, which consists of contemporary literature, the Delphi-questionnaires and interviews. The research process followed three main stages. In the first stage, plausible future scenarios and risk conditions were identified with the Delphi-panel. In the second stage, operating environments for peace support operations were described and consequent hypotheses formulated. In the third stage, these hypotheses were tested on the Delphi-panel. The Delphi-panel is sufficiently wide and diverse to produce plausible yet different insights. The research design utilised specifically military crisis management and peace operations theories. This produced various and relevant normative considerations. Therefore, one may argue that this research; which is based on accepted contemporary theory, hypotheses derived thereof and utilising an expert panel, contributes to the realm of peace support operations. This research finds that some degree of peace enforcement will be feasible and necessary in at least the following risk conditions: failed governance; potential spillover of ethnic, religious, ideological conflict; vulnerability of strategic chokepoints and infrastructures in ungoverned spaces; as well as in territorial and extra-territorial border disputes. In addition, some form of peace enforcement is probably necessary in risk conditions pertaining to: extremism of marginalised groups; potential disputes over previously uninhabited and resource-rich territories; and interstate rivalry. Furthermore, this research finds that peacekeeping measures will be feasible and necessary in at least risk conditions pertaining to: potential spillover of ethnic, religious, ideological conflict; uncontrolled migration; consequences from environmental catastrophes or changes; territorial and extra-territorial border disputes; and potential disputes over previously uninhabited and resource-rich territories. These findings are all subject to both generic and case specific preconditions that must exist for a peace support operation. Some deductions could be derived from the research findings. Although some risk conditions may appear illogical, understanding the underlying logic of a conflict is fundamental to understanding transition in crisis management. Practitioners of crisis management should possess cognizance of such transition. They must understand how transition should occur from threat to safety, from conflict to stability – and so forth. Understanding transition is imperative for managing the dynamic evolution of preconditions, which begins at the outset of a peace support operation. Furthermore, it is pertinent that spoilers are defined from a peace process point of view. If spoilers are defined otherwise, it changes the nature of an operation towards war, where the logic is breaking the will of an enemy - and surrender. In peace support operations, the logic is different: actions towards spoilers are intended to cause transition towards consent - not defeat. Notwithstanding future developments, history continues to provide strategic education. However, the distinction is that the risk conditions occur in novel futures. Hence, lessons learned from the past should be fitted to the case at hand. This research shows compelling evidence that swaying between intervention optimism and pessimism is not substantiated. Both peace enforcement and peacekeeping are sine qua non for successful military crisis management in the next decade.
Resumo:
This research establishes the primary components, predictors, and consequences of organizational commitment in the military context. Specifically, the research examines commitment to the military service among Finnish conscripts and whether initial affective commitment prior to service predicts later commitment, attitudes, behavior, and performance, and, furthermore, analyzes the changes in commitment and its possible outcomes. The data were collected from records as well as by surveys from 1,387 rank and file soldiers, immediately after they reported for duty, near the end of basic training, and near the end of 6 to 12 months of service. The data covered a wide array of predictor variables, including background items, attitudes toward conscription, mental and physical health, sociability, training quality, and leadership. Moreover, the archival data included such items as rank, criminal record, performance ratings, and the number of medical examines and exemptions. The measures were further refined based on the results of factor analysis and reliability tests. The results indicated that initial commitment significantly corresponded with expected adjustment, intentions to stay in the military, and acceptance of authority. Moreover, initial commitment moderately related to personal growth, perceived performance, and the number of effective service days at the end of service. During basic training, affective commitment was mostly influenced by challenging training, adjustment experiences, regimentation, and unit climate. At the end of service, committed soldiers demonstrated more personal growth and development in service, had higher-level expected performance, and less malingering during their service. Additionally, they had significantly more positive attitudes toward national defense. The results suggest that affective commitment requires adequate personal adjustment, experiences of personal growth and development, and satisfaction with unit dynamics and training. This research contributes to the theoretical discussion on organizational commitment and the will to defend the nation and advances developing models to support and manage conscript training, education, leadership, and personnel policy. This is achieved by determining the main factors and variables, including their relative strength, that affect commitment to the military service. These findings may also facilitate in designing programs aimed at reducing unwanted discharges and inadequate performance. In particular, these results provide tools for improving conscripts’ overall attachment to and identification with the military service.
Resumo:
The understanding of unsaturated soil water flow at process-level is essential to develop proper management actions for environmental protection in agricultural systems. One important tool for simulation of soil water flow that has been used worldwide is the SWAP model. The aim of this work was to test and to calibrate the SWAP model by inverse modeling to describe moisture profiles in a Brazilian very clayey Latossol in Dourados, State of Mato Grosso do Sul, Brazil. The SWAP model was tested in an experimental field of 0.09 ha cultivated with soybean and soil profiles were sampled eight times between December 2006 and October 2007. The SWAP input values (i.e. soil water retention curves and meteorological data) were based on in-situ measurements. Simulations with uncalibrated soil water retention curves resulted in moisture profiles that were too wet for almost all sampling dates, in particular between 0-10 cm depth. After calibration of soil water retention curves, there was a good improvement in the simulated moisture profiles, which were within the range of measured values for almost all depths and sampling dates.